其他分享
首页 > 其他分享> > yolov4+cbam

yolov4+cbam

作者:互联网

yolov4+cbam@TOC

import torch
from torch import nn
import torch.nn.functional as F
from tool.torch_utils import *
from tool.yolo_layer import YoloLayer

class BasicConv(nn.Module):
def init(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
super(BasicConv, self).init()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None

def forward(self, x):
    x = self.conv(x)
    if self.bn is not None:
        x = self.bn(x)
    if self.relu is not None:
        x = self.relu(x)
    return x

class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)

class ChannelGate(nn.Module):
def init(self, gate_channels, reduction_ratio=16, pool_types=[‘avg’, ‘max’]):
super(ChannelGate, self).init()
self.gate_channels = gate_channels
self.mlp = nn.Sequential(
Flatten(),
nn.Linear(gate_channels, gate_channels // 16), # 写死16
nn.ReLU(),
nn.Linear(gate_channels // 16, gate_channels)
)
self.pool_types = pool_types
def forward(self, x):
channel_att_sum = None
for pool_type in self.pool_types:
if pool_type==‘avg’:
avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp( avg_pool )
elif pool_type==‘max’:
max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp( max_pool )
elif pool_type==‘lp’:
lp_pool = F.lp_pool2d( x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp( lp_pool )
elif pool_type==‘lse’:
# LSE pool only
lse_pool = logsumexp_2d(x)
channel_att_raw = self.mlp( lse_pool )

        if channel_att_sum is None:
            channel_att_sum = channel_att_raw
        else:
            channel_att_sum = channel_att_sum + channel_att_raw

    scale = F.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x)
    return x * scale

def logsumexp_2d(tensor):
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
return outputs

class ChannelPool(nn.Module):
def forward(self, x):
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )

class SpatialGate(nn.Module):
def init(self):
super(SpatialGate, self).init()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = F.sigmoid(x_out) # broadcasting
return x * scale

class CBAM(nn.Module):
def init(self, gate_channels=1024, reduction_ratio=16, pool_types=[‘avg’, ‘max’], no_spatial=False):
super(CBAM, self).init()
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
self.no_spatial=no_spatial
if not no_spatial:
self.SpatialGate = SpatialGate()
def forward(self, x):
x_out = self.ChannelGate(x)
if not self.no_spatial:
x_out = self.SpatialGate(x_out)
return x_out

class Mish(torch.nn.Module):
def init(self):
super().init()

def forward(self, x):
    x = x * (torch.tanh(torch.nn.functional.softplus(x)))
    return x

class Upsample(nn.Module):
def init(self):
super(Upsample, self).init()

def forward(self, x, target_size, inference=False):
    assert (x.data.dim() == 4)
    # _, _, tH, tW = target_size

    if inference:

        #B = x.data.size(0)
        #C = x.data.size(1)
        #H = x.data.size(2)
        #W = x.data.size(3)

        return x.view(x.size(0), x.size(1), x.size(2), 1, x.size(3), 1).\
                expand(x.size(0), x.size(1), x.size(2), target_size[2] // x.size(2), x.size(3), target_size[3] // x.size(3)).\
                contiguous().view(x.size(0), x.size(1), target_size[2], target_size[3])
    else:
        return F.interpolate(x, size=(target_size[2], target_size[3]), mode='nearest')

class Conv_Bn_Activation(nn.Module):
def init(self, in_channels, out_channels, kernel_size, stride, activation, bn=True, bias=False):
super().init()
pad = (kernel_size - 1) // 2

    self.conv = nn.ModuleList()
    if bias:
        self.conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad))
    else:
        self.conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad, bias=False))
    if bn:
        self.conv.append(nn.BatchNorm2d(out_channels))
    if activation == "mish":
        self.conv.append(Mish())
    elif activation == "relu":
        self.conv.append(nn.ReLU(inplace=True))
    elif activation == "leaky":
        self.conv.append(nn.LeakyReLU(0.1, inplace=True))
    elif activation == "linear":
        pass
    else:
        print("activate error !!! {} {} {}".format(sys._getframe().f_code.co_filename,
                                                   sys._getframe().f_code.co_name, sys._getframe().f_lineno))

def forward(self, x):
    for l in self.conv:
        x = l(x)
    return x

class ResBlock(nn.Module):
“”"
Sequential residual blocks each of which consists of
two convolution layers.
Args:
ch (int): number of input and output channels.
nblocks (int): number of residual blocks.
shortcut (bool): if True, residual tensor addition is enabled.
“”"

def __init__(self, ch, nblocks=1, shortcut=True):
    super().__init__()
    self.shortcut = shortcut
    self.module_list = nn.ModuleList()
    for i in range(nblocks):
        resblock_one = nn.ModuleList()
        resblock_one.append(Conv_Bn_Activation(ch, ch, 1, 1, 'mish'))
        resblock_one.append(Conv_Bn_Activation(ch, ch, 3, 1, 'mish'))
        self.module_list.append(resblock_one)

def forward(self, x):
    for module in self.module_list:
        h = x
        for res in module:
            h = res(h)
        x = x + h if self.shortcut else h
    return x

class DownSample1(nn.Module):
def init(self):
super().init()
self.conv1 = Conv_Bn_Activation(3, 32, 3, 1, ‘mish’)

    self.conv2 = Conv_Bn_Activation(32, 64, 3, 2, 'mish')
    self.conv3 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
    # [route]
    # layers = -2
    self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')

    self.conv5 = Conv_Bn_Activation(64, 32, 1, 1, 'mish')
    self.conv6 = Conv_Bn_Activation(32, 64, 3, 1, 'mish')
    # [shortcut]
    # from=-3
    # activation = linear

    self.conv7 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
    # [route]
    # layers = -1, -7
    self.conv8 = Conv_Bn_Activation(128, 64, 1, 1, 'mish')

def forward(self, input):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x2)
    # route -2
    x4 = self.conv4(x2)
    x5 = self.conv5(x4)
    x6 = self.conv6(x5)
    # shortcut -3
    x6 = x6 + x4

    x7 = self.conv7(x6)
    # [route]
    # layers = -1, -7
    x7 = torch.cat([x7, x3], dim=1)
    x8 = self.conv8(x7)
    return x8

class DownSample2(nn.Module):
def init(self):
super().init()
self.conv1 = Conv_Bn_Activation(64, 128, 3, 2, ‘mish’)
self.conv2 = Conv_Bn_Activation(128, 64, 1, 1, ‘mish’)
# r -2
self.conv3 = Conv_Bn_Activation(128, 64, 1, 1, ‘mish’)

    self.resblock = ResBlock(ch=64, nblocks=2)

    # s -3
    self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, 'mish')
    # r -1 -10
    self.conv5 = Conv_Bn_Activation(128, 128, 1, 1, 'mish')

def forward(self, input):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x1)

    r = self.resblock(x3)
    x4 = self.conv4(r)

    x4 = torch.cat([x4, x2], dim=1)
    x5 = self.conv5(x4)
    return x5

class DownSample3(nn.Module):
def init(self):
super().init()
self.conv1 = Conv_Bn_Activation(128, 256, 3, 2, ‘mish’)
self.conv2 = Conv_Bn_Activation(256, 128, 1, 1, ‘mish’)
self.conv3 = Conv_Bn_Activation(256, 128, 1, 1, ‘mish’)

    self.resblock = ResBlock(ch=128, nblocks=8)
    self.conv4 = Conv_Bn_Activation(128, 128, 1, 1, 'mish')
    self.conv5 = Conv_Bn_Activation(256, 256, 1, 1, 'mish')

def forward(self, input):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x1)

    r = self.resblock(x3)
    x4 = self.conv4(r)

    x4 = torch.cat([x4, x2], dim=1)
    x5 = self.conv5(x4)
    return x5

class DownSample4(nn.Module):
def init(self):
super().init()
self.conv1 = Conv_Bn_Activation(256, 512, 3, 2, ‘mish’)
self.conv2 = Conv_Bn_Activation(512, 256, 1, 1, ‘mish’)
self.conv3 = Conv_Bn_Activation(512, 256, 1, 1, ‘mish’)

    self.resblock = ResBlock(ch=256, nblocks=8)
    self.conv4 = Conv_Bn_Activation(256, 256, 1, 1, 'mish')
    self.conv5 = Conv_Bn_Activation(512, 512, 1, 1, 'mish')

def forward(self, input):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x1)

    r = self.resblock(x3)
    x4 = self.conv4(r)

    x4 = torch.cat([x4, x2], dim=1)
    x5 = self.conv5(x4)
    return x5

class DownSample5(nn.Module):
def init(self):
super().init()
self.conv1 = Conv_Bn_Activation(512, 1024, 3, 2, ‘mish’)
self.conv2 = Conv_Bn_Activation(1024, 512, 1, 1, ‘mish’)
self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, ‘mish’)

    self.resblock = ResBlock(ch=512, nblocks=4)
    self.conv4 = Conv_Bn_Activation(512, 512, 1, 1, 'mish')
    self.conv5 = Conv_Bn_Activation(1024, 1024, 1, 1, 'mish')

def forward(self, input):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x1)

    r = self.resblock(x3)
    x4 = self.conv4(r)

    x4 = torch.cat([x4, x2], dim=1)
    x5 = self.conv5(x4)
    return x5

class Neck(nn.Module):
def init(self, inference=False):
super().init()
self.inference = inference

    self.conv1 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    self.conv2 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
    self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    # SPP
    self.maxpool1 = nn.MaxPool2d(kernel_size=5, stride=1, padding=5 // 2)
    self.maxpool2 = nn.MaxPool2d(kernel_size=9, stride=1, padding=9 // 2)
    self.maxpool3 = nn.MaxPool2d(kernel_size=13, stride=1, padding=13 // 2)

    # R -1 -3 -5 -6
    # SPP
    self.conv4 = Conv_Bn_Activation(2048, 512, 1, 1, 'leaky')
    self.conv5 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
    self.conv6 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    self.conv7 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    # UP
    self.upsample1 = Upsample()
    # R 85
    self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    # R -1 -3
    self.conv9 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv10 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
    self.conv11 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv12 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
    self.conv13 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv14 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
    # UP
    self.upsample2 = Upsample()
    # R 54
    self.conv15 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
    # R -1 -3
    self.conv16 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
    self.conv17 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
    self.conv18 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')
    self.conv19 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
    self.conv20 = Conv_Bn_Activation(256, 128, 1, 1, 'leaky')

def forward(self, input, downsample4, downsample3, inference=False):
    x1 = self.conv1(input)
    x2 = self.conv2(x1)
    x3 = self.conv3(x2)
    # SPP
    m1 = self.maxpool1(x3)
    m2 = self.maxpool2(x3)
    m3 = self.maxpool3(x3)
    spp = torch.cat([m3, m2, m1, x3], dim=1)
    # SPP end
    x4 = self.conv4(spp)
    x5 = self.conv5(x4)
    x6 = self.conv6(x5)
    x7 = self.conv7(x6)
    # UP
    up = self.upsample1(x7, downsample4.size(), self.inference)
    # R 85
    x8 = self.conv8(downsample4)
    # R -1 -3
    x8 = torch.cat([x8, up], dim=1)

    x9 = self.conv9(x8)
    x10 = self.conv10(x9)
    x11 = self.conv11(x10)
    x12 = self.conv12(x11)
    x13 = self.conv13(x12)
    x14 = self.conv14(x13)

    # UP
    up = self.upsample2(x14, downsample3.size(), self.inference)
    # R 54
    x15 = self.conv15(downsample3)
    # R -1 -3
    x15 = torch.cat([x15, up], dim=1)

    x16 = self.conv16(x15)
    x17 = self.conv17(x16)
    x18 = self.conv18(x17)
    x19 = self.conv19(x18)
    x20 = self.conv20(x19)
    return x20, x13, x6

class Yolov4Head(nn.Module):
def init(self, output_ch, n_classes, inference=False):
super().init()
self.inference = inference

    self.conv1 = Conv_Bn_Activation(128, 256, 3, 1, 'leaky')
    self.conv2 = Conv_Bn_Activation(256, output_ch, 1, 1, 'linear', bn=False, bias=True)

    self.yolo1 = YoloLayer(
                            anchor_mask=[0, 1, 2], num_classes=n_classes,
                            anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
                            num_anchors=9, stride=8)

    # R -4
    self.conv3 = Conv_Bn_Activation(128, 256, 3, 2, 'leaky')

    # R -1 -16
    self.conv4 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv5 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
    self.conv6 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv7 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
    self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, 'leaky')
    self.conv9 = Conv_Bn_Activation(256, 512, 3, 1, 'leaky')
    self.conv10 = Conv_Bn_Activation(512, output_ch, 1, 1, 'linear', bn=False, bias=True)
    
    self.yolo2 = YoloLayer(
                            anchor_mask=[3, 4, 5], num_classes=n_classes,
                            anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
                            num_anchors=9, stride=16)

    # R -4
    self.conv11 = Conv_Bn_Activation(256, 512, 3, 2, 'leaky')

    # R -1 -37
    self.conv12 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    self.conv13 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
    self.conv14 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    self.conv15 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
    self.conv16 = Conv_Bn_Activation(1024, 512, 1, 1, 'leaky')
    self.conv17 = Conv_Bn_Activation(512, 1024, 3, 1, 'leaky')
    self.conv18 = Conv_Bn_Activation(1024, output_ch, 1, 1, 'linear', bn=False, bias=True)
    
    self.yolo3 = YoloLayer(
                            anchor_mask=[6, 7, 8], num_classes=n_classes,
                            anchors=[12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401],
                            num_anchors=9, stride=32)

def forward(self, input1, input2, input3):
    x1 = self.conv1(input1)
    x2 = self.conv2(x1)

    x3 = self.conv3(input1)
    # R -1 -16
    x3 = torch.cat([x3, input2], dim=1)
    x4 = self.conv4(x3)
    x5 = self.conv5(x4)
    x6 = self.conv6(x5)
    x7 = self.conv7(x6)
    x8 = self.conv8(x7)
    x9 = self.conv9(x8)
    x10 = self.conv10(x9)

    # R -4
    x11 = self.conv11(x8)
    # R -1 -37
    x11 = torch.cat([x11, input3], dim=1)

    x12 = self.conv12(x11)
    x13 = self.conv13(x12)
    x14 = self.conv14(x13)
    x15 = self.conv15(x14)
    x16 = self.conv16(x15)
    x17 = self.conv17(x16)
    x18 = self.conv18(x17)
    
    if self.inference:
        y1 = self.yolo1(x2)
        y2 = self.yolo2(x10)
        y3 = self.yolo3(x18)

        return get_region_boxes([y1, y2, y3])
    
    else:
        return [x2, x10, x18]

class Yolov4(nn.Module):
def init(self, yolov4conv137weight=None, n_classes=80, inference=False):
super().init()

    output_ch = (4 + 1 + n_classes) * 3

    # backbone
    self.down1 = DownSample1()
    self.down2 = DownSample2()
    self.down3 = DownSample3()
    self.down4 = DownSample4()
    self.down5 = DownSample5()
    self.cbam = CBAM()
    # neck
    self.neck = Neck(inference)
    # yolov4conv137
    if yolov4conv137weight:
        _model = nn.Sequential(self.down1, self.down2, self.down3, self.down4, self.down5, self.cbam, self.neck)
        pretrained_dict = torch.load(yolov4conv137weight)

        model_dict = _model.state_dict()
        # 1. filter out unnecessary keys
        pretrained_dict = {k1: v for (k, v), k1 in zip(pretrained_dict.items(), model_dict)}
        # 2. overwrite entries in the existing state dict
        model_dict.update(pretrained_dict)
        _model.load_state_dict(model_dict)
    
    # head
    self.head = Yolov4Head(output_ch, n_classes, inference)


def forward(self, input):
    d1 = self.down1(input)
    d2 = self.down2(d1)
    d3 = self.down3(d2)
    d4 = self.down4(d3)
    d5 = self.down5(d4)
    d6 = self.cbam(d5)
    x20, x13, x6 = self.neck(d6, d4, d3)

    output = self.head(x20, x13, x6)
    return output

if name == “main”:
import sys
import cv2

# namesfile = None
# if len(sys.argv) == 6:
#     n_classes = int(sys.argv[1])
#     weightfile = sys.argv[2]
#     imgfile = sys.argv[3]
#     height = int(sys.argv[4])
#     width = int(sys.argv[5])
# elif len(sys.argv) == 7:
#     n_classes = int(sys.argv[1])
#     weightfile = sys.argv[2]
#     imgfile = sys.argv[3]
#     height = int(sys.argv[4])
#     width = int(sys.argv[5])
#     namesfile = sys.argv[6]
# else:
#     print('Usage: ')
#     print('  python models.py num_classes weightfile imgfile namefile')
import torch
x = torch.rand(1, 3, 512, 512)
model = Yolov4(yolov4conv137weight=None, n_classes=3, inference=False)
y = model(x)
print(model)
for i in range(len(y)):
    print(y[i].shape)

# pretrained_dict = torch.load(weightfile, map_location=torch.device('cuda'))
# model.load_state_dict(pretrained_dict)

# use_cuda = True
# if use_cuda:
#     model.cuda()

# img = cv2.imread(imgfile)

# # Inference input size is 416*416 does not mean training size is the same
# # Training size could be 608*608 or even other sizes
# # Optional inference sizes:
# #   Hight in {320, 416, 512, 608, ... 320 + 96 * n}
# #   Width in {320, 416, 512, 608, ... 320 + 96 * m}
# sized = cv2.resize(img, (width, height))
# sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)

# from tool.utils import load_class_names, plot_boxes_cv2
# from tool.torch_utils import do_detect

# for i in range(2):  # This 'for' loop is for speed check
#                     # Because the first iteration is usually longer
#     boxes = do_detect(model, sized, 0.4, 0.6, use_cuda)

# if namesfile == None:
#     if n_classes == 20:
#         namesfile = 'data/voc.names'
#     elif n_classes == 80:
#         namesfile = 'data/coco.names'
#     else:
#         print("please give namefile")

# class_names = load_class_names(namesfile)
# plot_boxes_cv2(img, boxes[0], 'predictions.jpg', class_names)

标签:yolov4,Conv,512,cbam,self,size,Activation,Bn
来源: https://blog.csdn.net/qq_38102943/article/details/122537312