朴素贝叶斯(3)
作者:互联网
通俗来说,贝叶斯是在计算概率值,而朴素贝叶斯假设先验数据类别均相互独立。
先验数据--建立已知数据及已知类别
测试数据--计算属于先验数据的条件概率,属于该类数据类别的概率越高则被预测为该类
训练部分代码:
def trainNB0(trainMatrix,trainCategory):
# 样本数据集:trainMatrix
# 样本标签:trainCategory
numTrainDocs = len(trainMatrix) # 样本总数
numWords = len(trainMatrix[0]) # 样本特征数
pAbusive = sum(trainCategory)/float(numTrainDocs) # 条件概率分母部分
p0Num = ones(numWords); p1Num = ones(numWords)
p0Denom = 2.0; p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) # 为1的条件概率分子部分
p0Vect = log(p0Num/p0Denom) # 为0的条件概率分子部分
return p0Vect,p1Vect,pAbusive
分类部分代码:
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
# vec2Classify:待分类的向量
# p0Vec, p1Vec, pClass1:训练数据提供的概率值
p1 = sum(vec2Classify * p1Vec) + log(pClass1) # element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
测试部分代码:
def testingNB():
listOPosts, listClasses = loadDataSet() # 导入数据集
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) # 训练
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
应用举例:
问题描述--判断邮件是否为垃圾邮件,借由一些关键词,带有这些词的即为垃圾邮件
样本数据--邮件集,词语标签【关键词,非关键词】
eg,【邮件】 hello【非关键词0】!stupid【关键词1】 dog【关键词1】!
新给出邮件,判断是否为垃圾邮件
标签:testEntry,--,sum,关键词,贝叶斯,trainCategory,朴素,trainMatrix 来源: https://blog.csdn.net/harden1013/article/details/122533807