Hadoop HA 高可用
作者:互联网
第一章 HA 概述
(1)所谓 HA(High Availablity),即高可用(7*24 小时不中断服务)。
(2)实现高可用最关键的策略是消除单点故障。HA 严格来说应该分成各个组件的 HA机制:HDFS 的 HA 和 YARN 的 HA。
(3)NameNode 主要在以下两个方面影响 HDFS 集群
- NameNode 机器发生意外,如宕机,集群将无法使用,直到管理员重启
- NameNode 机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA 功能通过配置多个 NameNodes(Active/Standby)实现在集群中对 NameNode 的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将 NameNode 很快的切换到另外一台机器。
第二章 HDFS-HA 集群搭建
当前 HDFS 集群的规划
hadoop102 | hadoop103 | hadoop104 |
NameNode | Secondarynamenode | |
DataNode | DataNode | DataNode |
HA 的主要目的是消除 namenode 的单点故障,需要将 hdfs 集群规划成以下模样
hadoop102 | hadoop103 | hadoop104 |
NameNode | NameNode | NameNode |
DataNode | DataNode | DataNode |
2.1 HDFS-HA 核心问题
1)怎么保证三台 namenode 的数据一致
- a.Fsimage:让一台 nn 生成数据,让其他机器 nn 同步
- b.Edits:需要引进新的模块 JournalNode 来保证 edtis 的文件的数据一致性
https://www.cnblogs.com/wkfvawl/p/15475122.html#scroller-28
2)怎么让同时只有一台 nn 是 active,其他所有是 standby 的
- a.手动分配
- b.自动分配
3)2nn 在 ha 架构中并不存在,定期合并 fsimage 和 edtis 的活谁来干
由 standby 的 nn 来干
4)如果 nn 真的发生了问题,怎么让其他的 nn 上位干活
- a.手动故障转移
- b.自动故障转移
第三章 HDFS-HA 手动模式
3.1 环境准备
(1)修改 IP
(2)修改主机名及主机名和 IP 地址的映射
(3)关闭防火墙
(4)ssh 免密登录
(5)安装 JDK,配置环境变量等
3.2 规划集群
hadoop102 | hadoop103 | hadoop104 |
NameNode | NameNode | NameNode |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
3.3 配置 HDFS-HA 集群
1)官方地址:http://hadoop.apache.org/
2)在 opt 目录下创建一个 ha 文件夹
[atguigu@hadoop102 ~]$ cd /opt [atguigu@hadoop102 opt]$ sudo mkdir ha [atguigu@hadoop102 opt]$ sudo chown atguigu:atguigu /opt/ha
3)将/opt/module/下的 hadoop-3.1.3 拷贝到/opt/ha 目录下(记得删除 data 和 log 目录)
[atguigu@hadoop102 opt]$ cp -r /opt/module/hadoop-3.1.3 /opt/ha/
4)配置 core-site.xml
<configuration> <!-- 把多个 NameNode 的地址组装成一个集群 mycluster --> <property> <name>fs.defaultFS</name> <value>hdfs://mycluster</value> </property> <!-- 指定 hadoop 运行时产生文件的存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/opt/ha/hadoop-3.1.3/data</value> </property> </configuration>
5)配置 hdfs-site.xml
<configuration> <!-- NameNode 数据存储目录 --> <property> <name>dfs.namenode.name.dir</name> <value>file://${hadoop.tmp.dir}/name</value> </property> <!-- DataNode 数据存储目录 --> <property> <name>dfs.datanode.data.dir</name> <value>file://${hadoop.tmp.dir}/data</value> </property> <!-- JournalNode 数据存储目录 --> <property> <name>dfs.journalnode.edits.dir</name> <value>${hadoop.tmp.dir}/jn</value> </property> <!-- 完全分布式集群名称 --> <property> <name>dfs.nameservices</name> <value>mycluster</value> </property> <!-- 集群中 NameNode 节点都有哪些 --> <property> <name>dfs.ha.namenodes.mycluster</name> <value>nn1,nn2,nn3</value> </property> <!-- NameNode 的 RPC 通信地址 --> <property> <name>dfs.namenode.rpc-address.mycluster.nn1</name> <value>hadoop102:8020</value> </property> <property> <name>dfs.namenode.rpc-address.mycluster.nn2</name> <value>hadoop103:8020</value> </property> <property> <name>dfs.namenode.rpc-address.mycluster.nn3</name> <value>hadoop104:8020</value> </property> <!-- NameNode 的 http 通信地址 --> <property> <name>dfs.namenode.http-address.mycluster.nn1</name> <value>hadoop102:9870</value> </property> <property> <name>dfs.namenode.http-address.mycluster.nn2</name> <value>hadoop103:9870</value> </property> <property> <name>dfs.namenode.http-address.mycluster.nn3</name> <value>hadoop104:9870</value> </property> <!-- 指定 NameNode 元数据在 JournalNode 上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/myclus ter</value> </property> <!-- 访问代理类:client 用于确定哪个 NameNode 为 Active --> <property> <name>dfs.client.failover.proxy.provider.mycluster</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyP rovider</value> </property> <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 --> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <!-- 使用隔离机制时需要 ssh 秘钥登录--> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/atguigu/.ssh/id_rsa</value> </property> </configuration>
6)分发配置好的 hadoop 环境到其他节点
3.4 启动 HDFS-HA 集群
1)将 HADOOP_HOME 环境变量更改到 HA 目录(三台机器)
[atguigu@hadoop102 ~]$ sudo vim /etc/profile.d/my_env.sh
将 HADOOP_HOME 部分改为如下
#HADOOP_HOME export HADOOP_HOME=/opt/ha/hadoop-3.1.3 export PATH=$PATH:$HADOOP_HOME/bin export PATH=$PATH:$HADOOP_HOME/sbin
去三台机器上 source 环境变量
[atguigu@hadoop102 ~]$source /etc/profile
2)在各个 JournalNode 节点上,输入以下命令启动 journalnode 服务
[atguigu@hadoop102 ~]$ hdfs --daemon start journalnode [atguigu@hadoop103 ~]$ hdfs --daemon start journalnode [atguigu@hadoop104 ~]$ hdfs --daemon start journalnode
3)在[nn1]上,对其进行格式化,并启动
[atguigu@hadoop102 ~]$ hdfs namenode -format [atguigu@hadoop102 ~]$ hdfs --daemon start namenode
4)在[nn2]和[nn3]上,同步 nn1 的元数据信息
[atguigu@hadoop103 ~]$ hdfs namenode -bootstrapStandby [atguigu@hadoop104 ~]$ hdfs namenode -bootstrapStandby
5)启动[nn2]和[nn3]
[atguigu@hadoop103 ~]$ hdfs --daemon start namenode [atguigu@hadoop104 ~]$ hdfs --daemon start namenode
6)查看 web 页面显示
图 hadoop102(standby)
图 hadoop103(standby)
图 hadoop104(standby)
7)在所有节点上,启动 datanode
[atguigu@hadoop102 ~]$ hdfs --daemon start datanode [atguigu@hadoop103 ~]$ hdfs --daemon start datanode [atguigu@hadoop104 ~]$ hdfs --daemon start datanode
8)将[nn1]切换为 Active
[atguigu@hadoop102 ~]$ hdfs haadmin -transitionToActive nn1
9)查看是否 Active
[atguigu@hadoop102 ~]$ hdfs haadmin -getServiceState nn1
第四章 HDFS-HA 自动模式
4.1 HDFS-HA 自动故障转移工作机制
自动故障转移为 HDFS 部署增加了两个新组件:ZooKeeper 和 ZKFailoverController(ZKFC)进程,如图所示。ZooKeeper 是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。
4.2 HDFS-HA 自动故障转移的集群规划
hadoop102 | hadoop103 | hadoop104 |
NameNode | NameNode | NameNode |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
Zookeeper | Zookeeper | Zookeeper |
ZKFC | ZKFC | ZKFC |
4.3 配置 HDFS-HA 自动故障转移
1)具体配置
(1)在 hdfs-site.xml 中增加
<!-- 启用 nn 故障自动转移 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property>
(2)在 core-site.xml 文件中增加
<!-- 指定 zkfc 要连接的 zkServer 地址 --> <property> <name>ha.zookeeper.quorum</name> <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value> </property>
2181:zookeeper对Client端提供服务的端口。
(3)修改后分发配置文件
[atguigu@hadoop102 etc]$ pwd /opt/ha/hadoop-3.1.3/etc [atguigu@hadoop102 etc]$ xsync hadoop/
2)启动
(1)关闭所有 HDFS 服务:
[atguigu@hadoop102 ~]$ stop-dfs.sh
(2)启动 Zookeeper 集群:
[atguigu@hadoop102 ~]$ zkServer.sh start [atguigu@hadoop103 ~]$ zkServer.sh start [atguigu@hadoop104 ~]$ zkServer.sh start
(3)启动 Zookeeper 以后,然后再初始化 HA 在 Zookeeper 中状态:
[atguigu@hadoop102 ~]$ hdfs zkfc -formatZK
(4)启动 HDFS 服务:
[atguigu@hadoop102 ~]$ start-dfs.sh
(5)可以去 zkCli.sh 客户端查看 Namenode 选举锁节点内容:
[zk: localhost:2181(CONNECTED) 7] get -s /hadoop-ha/mycluster/ActiveStandbyElectorLock myclusternn2 hadoop103 �>(�> cZxid = 0x10000000b ctime = Tue Jul 14 17:00:13 CST 2020 mZxid = 0x10000000b mtime = Tue Jul 14 17:00:13 CST 2020 pZxid = 0x10000000b cversion = 0 dataVersion = 0 aclVersion = 0 ephemeralOwner = 0x40000da2eb70000 dataLength = 33 numChildren = 0
3)验证
(1)将 Active NameNode 进程 kill,查看网页端三台 Namenode 的状态变化
[atguigu@hadoop102 ~]$ kill -9 namenode 的进程 id
4.3 解决 NN 连接不上 JN 的问题
自动故障转移配置好以后,然后使用 start-dfs.sh 群起脚本启动 hdfs 集群,有可能会遇到 NameNode 起来一会后,进程自动关闭的问题。查看 NameNode 日志,报错信
息如下:
2020-08-17 10:11:40,658 INFO org.apache.hadoop.ipc.Client: Retrying connect to server: hadoop104/192.168.6.104:8485. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS) 2020-08-17 10:11:40,659 INFO org.apache.hadoop.ipc.Client: Retrying connect to server: hadoop102/192.168.6.102:8485. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS) 2020-08-17 10:11:40,659 INFO org.apache.hadoop.ipc.Client: Retrying connect to server: hadoop103/192.168.6.103:8485. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS) 2020-08-17 10:11:49,678 WARN org.apache.hadoop.hdfs.server.namenode.FSEditLog: Unable to determine input streams from QJM to [192.168.6.102:8485, 192.168.6.103:8485, 192.168.6.104:8485]. Skipping.org.apache.hadoop.hdfs.qjournal.client.QuorumException: Got too many exceptions to achieve quorum size 2/3. 3 exceptions thrown:192.168.6.103:8485: Call From hadoop102/192.168.6.102 to hadoop103:8485 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
查看报错日志,可分析出报错原因是因为 NameNode 连接不上 JournalNode,而利用 jps 命令查看到三台 JN 都已经正常启动,为什么 NN 还是无法正常连接到 JN 呢?这是因为 start-dfs.sh 群起脚本默认的启动顺序是先启动 NN,再启动 DN,然后再启动 JN,并且默认的 rpc 连接参数是重试次数为 10,每次重试的间隔是 1s,也就是说启动完 NN以后的 10s 中内,JN 还启动不起来,NN 就会报错了。
core-default.xml 里面有两个参数如下:
<!-- NN 连接 JN 重试次数,默认是 10 次 --> <property> <name>ipc.client.connect.max.retries</name> <value>10</value> </property> <!-- 重试时间间隔,默认 1s --> <property> <name>ipc.client.connect.retry.interval</name> <value>1000</value> </property>
解决方案:遇到上述问题后,可以稍等片刻,等 JN 成功启动后,手动启动下三台NN:
[atguigu@hadoop102 ~]$ hdfs --daemon start namenode [atguigu@hadoop103 ~]$ hdfs --daemon start namenode [atguigu@hadoop104 ~]$ hdfs --daemon start namenode
也可以在 core-site.xml 里面适当调大上面的两个参数:
<!-- NN 连接 JN 重试次数,默认是 10 次 --> <property> <name>ipc.client.connect.max.retries</name> <value>20</value> </property> <!-- 重试时间间隔,默认 1s --> <property> <name>ipc.client.connect.retry.interval</name> <value>5000</value> </property>
第五章 YARN-HA 配置
5.1 YARN-HA 工作机制
1)官方文档:
http://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.htm
2)YARN-HA 工作机制
5.2 配置 YARN-HA 集群
1)环境准备
(1)修改 IP
(2)修改主机名及主机名和 IP 地址的映射
(3)关闭防火墙
(4)ssh 免密登录
(5)安装 JDK,配置环境变量等
(6)配置 Zookeeper 集群
2)规划集群
hadoop102 | hadoop103 | hadoop104 |
ResourceManager | ResourceManager | ResourceManager |
NodeManager | NodeManager | NodeManager |
Zookeeper | Zookeeper | Zookeeper |
3)核心问题
a .如果当前 active rm 挂了,其他 rm 怎么将其他 standby rm 上位?
核心原理跟 hdfs 一样,利用了 zk 的临时节点
b. 当前 rm 上有很多的计算程序在等待运行,其他的 rm 怎么将这些程序接手过来接着跑?
rm 会将当前的所有计算程序的状态存储在 zk 中,其他 rm 上位后会去读取,然后接着跑
4)具体配置
(1)yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <!-- 启用 resourcemanager ha --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 声明两台 resourcemanager 的地址 --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>cluster-yarn1</value> </property> <!--指定 resourcemanager 的逻辑列表--> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2,rm3</value> </property> <!-- ========== rm1 的配置 ========== --> <!-- 指定 rm1 的主机名 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>hadoop102</value> </property> <!-- 指定 rm1 的 web 端地址 --> <property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>hadoop102:8088</value> </property> <!-- 指定 rm1 的内部通信地址 --> <property> <name>yarn.resourcemanager.address.rm1</name> <value>hadoop102:8032</value> </property> <!-- 指定 AM 向 rm1 申请资源的地址 --> <property> <name>yarn.resourcemanager.scheduler.address.rm1</name> <value>hadoop102:8030</value> </property> <!-- 指定供 NM 连接的地址 --> <property> <name>yarn.resourcemanager.resource-tracker.address.rm1</name> <value>hadoop102:8031</value> </property> <!-- ========== rm2 的配置 ========== --> <!-- 指定 rm2 的主机名 --> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>hadoop103</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>hadoop103:8088</value> </property> <property> <name>yarn.resourcemanager.address.rm2</name> <value>hadoop103:8032</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm2</name> <value>hadoop103:8030</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm2</name> <value>hadoop103:8031</value> </property> <!-- ========== rm3 的配置 ========== --> <!-- 指定 rm1 的主机名 --> <property> <name>yarn.resourcemanager.hostname.rm3</name> <value>hadoop104</value> </property> <!-- 指定 rm1 的 web 端地址 --> <property> <name>yarn.resourcemanager.webapp.address.rm3</name> <value>hadoop104:8088</value> </property> <!-- 指定 rm1 的内部通信地址 --> <property> <name>yarn.resourcemanager.address.rm3</name> <value>hadoop104:8032</value> </property> <!-- 指定 AM 向 rm1 申请资源的地址 --> <property> <name>yarn.resourcemanager.scheduler.address.rm3</name> <value>hadoop104:8030</value> </property> <!-- 指定供 NM 连接的地址 --> <property> <name>yarn.resourcemanager.resource-tracker.address.rm3</name> <value>hadoop104:8031</value> </property> <!-- 指定 zookeeper 集群的地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value> </property> <!-- 启用自动恢复 --> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <!-- 指定 resourcemanager 的状态信息存储在 zookeeper 集群 --> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateSt ore</value> </property> <!-- 环境变量的继承 --> <property> <name>yarn.nodemanager.env-whitelist</name> <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value> </property> </configuration>
(2)同步更新其他节点的配置信息,分发配置文件
[atguigu@hadoop102 etc]$ xsync hadoop/
4)启动 YARN
(1)在 hadoop102 或者 hadoop103 中执行:
[atguigu@hadoop102 ~]$ start-yarn.sh
(2)查看服务状态
[atguigu@hadoop102 ~]$ yarn rmadmin -getServiceState rm1
(3)可以去 zkCli.sh 客户端查看 ResourceManager 选举锁节点内容:
[atguigu@hadoop102 ~]$ zkCli.sh [zk: localhost:2181(CONNECTED) 16] get -s /yarn-leader-election/cluster-yarn1/ActiveStandbyElectorLock cluster-yarn1rm1 cZxid = 0x100000022 ctime = Tue Jul 14 17:06:44 CST 2020 mZxid = 0x100000022 mtime = Tue Jul 14 17:06:44 CST 2020 pZxid = 0x100000022 cversion = 0 dataVersion = 0 aclVersion = 0 ephemeralOwner = 0x30000da33080005 dataLength = 20 numChildren = 0
(4)web 端查看 hadoop102:8088 和 hadoop103:8088 的 YARN 的状态
5.3 HADOOP HA 的最终规划
将整个 ha 搭建完成后,集群将形成以下模样
hadoop102 | hadoop103 | hadoop104 |
NameNode | NameNode | NameNode |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
Zookeeper | Zookeeper | Zookeeper |
ZKFC | ZKFC | ZKFC |
ResourceManager | ResourceManager | ResourceManager |
NodeManager | NodeManager | NodeManager |
标签:hdfs,hadoop102,可用,Hadoop,yarn,hadoop,atguigu,hadoop103,HA 来源: https://www.cnblogs.com/wkfvawl/p/15809062.html