cf1060 E. Sergey and Subway(树形dp)
作者:互联网
题意:
给定一棵树,然后在所有有相同邻点的点对之间连边。新连的边不能用于判断相邻。求所有点对的距离和。
思路:
法一:烦人的树形dp。维护子树中与根的距离为奇数的点数和距离为偶数的点数。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 2e5 + 5, M = 4e5 + 5;
int h[N], e[M], ne[M], idx;
void add(int a, int b) {
e[++idx] = b, ne[idx] = h[a], h[a] = idx;
}
ll res[N], siz1[N], siz0[N], sum1[N], sum0[N];
void dfs(int u, int fa)
{
siz0[u] = 1;
for(int i = h[u]; i; i = ne[i])
{
int v = e[i]; if(v == fa) continue;
dfs(v, u);
res[u] += sum0[u]/2 * siz1[v] + (sum1[v]+siz1[v])/2 * (siz0[u]-1)
+ (sum1[u]+siz1[u])/2 * siz0[v] + sum0[v]/2 * siz1[u]
+ (sum1[u]+siz1[u])/2 * siz1[v] + (sum1[v]+siz1[v])/2 * siz1[u]
+ sum0[u]/2 * siz0[v] + sum0[v]/2 * (siz0[u]-1) + siz0[v] * (siz0[u]-1);
siz1[u] += siz0[v], siz0[u] += siz1[v];
sum1[u] += siz0[v] + sum0[v], sum0[u] += siz1[v] + sum1[v];
}
res[u] += sum0[u]/2 + (sum1[u]+siz1[u])/2;
}
signed main()
{
int n; scanf("%d", &n);
for(int i = 1, a, b; i < n; i++) scanf("%d%d", &a, &b), add(a, b), add(b, a);
dfs(1, 0);
ll ans = 0;
for(int i = 1; i <= n; i++) ans += res[i];
printf("%lld", ans);
return 0;
}
法二:不加边之前的答案为 \(\sum size_u(n-size_u)\) 。
加边后,距离为偶数的点对距离减半;奇数的减半后+1。
不加边前,ans=偶数层到偶数层的点对距离和(X)+奇数层到奇数层的点对距离和(Y)+奇数到偶数的点对距离和(Z) 。X和Y必然为偶数,缩小一半;Z的数量为深度为奇的点数×深度为偶的点数
ll siz[N], cnt;
void dfs(int u, int fa, int dep)
{
siz[u] = 1;
if(dep % 2) cnt++;
for(int i = h[u]; i; i = ne[i]) {
int v = e[i]; if(v == fa) continue;
dfs(v, u, dep + 1);
siz[u] += siz[v];
}
}
ll ans = 0;
for(int i = 1; i <= n; i++) ans += siz[i] * (n - siz[i]);
ans += cnt * (n - cnt); ans /= 2;
printf("%lld", ans);
标签:dfs,int,siz0,siz1,sum1,sum0,Sergey,Subway,cf1060 来源: https://www.cnblogs.com/wushansinger/p/15806036.html