数据结构实现相关
作者:互联网
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push
, peek
, pop
, and empty
).
Implement the MyQueue
class:
void push(int x)
Pushes element x to the back of the queue.int pop()
Removes the element from the front of the queue and returns it.int peek()
Returns the element at the front of the queue.boolean empty()
Returnstrue
if the queue is empty,false
otherwise.
Notes:
- You must use only standard operations of a stack, which means only
push to top
,peek/pop from top
,size
, andis empty
operations are valid. - Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Example 1:
Input ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] Output [null, null, null, 1, 1, false] Explanation MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: [1] myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is [2] myQueue.empty(); // return false
Constraints:
1 <= x <= 9
- At most
100
calls will be made topush
,pop
,peek
, andempty
. - All the calls to
pop
andpeek
are valid.
Follow-up: Can you implement the queue such that each operation is amortized O(1)
time complexity? In other words, performing n
operations will take overall O(n)
time even if one of those operations may take longer.
解法1: push之前确保元素都在stack1(stack2是空的), pop/peek之前确保元素都在stack2(stack1是空的)
时间复杂度 peek/pop/push 均为O(N)
class MyQueue { private Stack<Integer> stack1; private Stack<Integer> stack2; public MyQueue() { stack1 = new Stack(); stack2 = new Stack(); } public void push(int x) { while(!stack2.isEmpty()) stack1.push(stack2.pop()); stack1.push(x); } public int pop() { while(!stack1.isEmpty()) stack2.push(stack1.pop()); return stack2.pop(); } public int peek() { while(!stack1.isEmpty()) stack2.push(stack1.pop()); return stack2.peek(); } public boolean empty() { return stack1.isEmpty() && stack2.isEmpty(); } } /** * Your MyQueue object will be instantiated and called as such: * MyQueue obj = new MyQueue(); * obj.push(x); * int param_2 = obj.pop(); * int param_3 = obj.peek(); * boolean param_4 = obj.empty(); */
优化后解法:push总是放到stack1,pop的时候先判定stack2是不是空的,如果是空的情况下才把stack1的元素都挪过来
时间复杂度 push为O(1), pop/peek amertized O(1)
class MyQueue { private Stack<Integer> stack1; private Stack<Integer> stack2; public MyQueue() { stack1 = new Stack(); stack2 = new Stack(); } public void push(int x) { stack1.push(x); } public int pop() { peek(); return stack2.pop(); } public int peek() { if(stack2.isEmpty()){ while(!stack1.isEmpty()) stack2.push(stack1.pop()); } return stack2.peek(); } public boolean empty() { return stack1.isEmpty() && stack2.isEmpty(); } } /** * Your MyQueue object will be instantiated and called as such: * MyQueue obj = new MyQueue(); * obj.push(x); * int param_2 = obj.pop(); * int param_3 = obj.peek(); * boolean param_4 = obj.empty(); */
标签:peek,实现,pop,MyQueue,push,相关,数据结构,stack2,stack1 来源: https://www.cnblogs.com/cynrjy/p/15782720.html