其他分享
首页 > 其他分享> > SpringCloud Day04---服务降级(Hystrix)

SpringCloud Day04---服务降级(Hystrix)

作者:互联网

文章目录

7. Hystrix断路器

7.1 概述

7.1.1 分布式系统面临的问题

复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败。

image-20220107145241067

服务雪崩
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的“雪崩效应”.

对于高流量的应用来说,单一的后端依赖可能会导致所有服务器上的所有资源都在几秒钟内饱和。比失败更糟糕的是,这些应用程序还可能导致服务之间的延迟增加,备份队列,线程和其他系统资源紧张,导致整个系统发生更多的级联故障。这些都表示需要对故障和延迟进行隔离和管理,以便单个依赖关系的失败,不能取消整个应用程序或系统。
所以,通常当你发现一个模块下的某个实例失败后,这时候这个模块依然还会接收流量,然后这个有问题的模块还调用了其他的模块,这样就会发生级联故障,或者叫雪崩。

7.1.2 是什么

Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时、异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。

“断路器”本身是一种开关装置,当某个服务单元发生故障之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个符合预期的、可处理的备选响应(FallBack),而不是长时间的等待或者抛出调用方无法处理的异常,这样就保证了服务调用方的线程不会被长时间、不必要地占用,从而避免了故障在分布式系统中的蔓延,乃至雪崩。

7.1.3 服务降级

7.1.4 官网资料

如何使用: https://github.com/Netflix/Hystrix/wiki/How-To-Use

Hystrix官宣,停更进维: https://github.com/Netflix/Hystrix

image-20220107145806117

7.2 Hystrix重要概念

7.2.1 服务降级

服务器忙,请稍后再试,不让客户端等待并立刻返回一个友好提示,fallback

哪些情况会出发降级:

7.2.2 服务熔断

类比保险丝达到最大服务访问后,直接拒绝访问,拉闸限电,然后调用服务降级的方法并返回友好提示

就是保险丝:服务的降级->进而熔断->恢复调用链路

7.2.3 服务限流

秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行

7.3 hystrix案例

7.3.1 构建生产者payment8001

<dependencies>
        <!--hystrix-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
        </dependency>
        <!--eureka client-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
        </dependency>
        <!--web-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency><!-- 引入自己定义的api通用包,可以使用Payment支付Entity -->
            <groupId>com.rg.springcloud</groupId>
            <artifactId>cloud-api-commons</artifactId>
            <version>${project.version}</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

server:
  port: 8001

spring:
  application:
    name: cloud-provider-hystrix-payment

eureka:
  client:
    register-with-eureka: true
    fetch-registry: true
    service-url:
      #defaultZone: http://eureka7001.com:7001/eureka
      defaultZone: http://eureka7001.com:7001/eureka,http://eureka7002.com:7002/eureka,http://eureka7004.com:7004/eureka  # 集群版
@SpringBootApplication
@EnableEurekaClient //本服务启动后会自动注册进eureka服务中
public class PaymentHystrixMain8001
{
    public static void main(String[] args)
    {
        SpringApplication.run(PaymentHystrixMain8001.class,args);
    }
}

service

public interface PaymentService {
    public String paymentInfo_OK(Integer id);
    public String paymentInfo_TimeOut(Integer id);
}

@Service
public class PaymentServiceImpl implements PaymentService {
    /**
     * 正常访问,返回OK
     * @param id
     * @return
     */
    @Override
    public String paymentInfo_OK(Integer id) {
        return "线程池:  "+Thread.currentThread().getName()+" paymentInfo_OK,id:   "+id+"O(∩_∩)O哈哈哈~~~";
    }

    /**
     * 超时访问,演示降级
     * @param id
     * @return
     */
    public String paymentInfo_TimeOut(Integer id) {

        int timeNumber = 3;
        try {
            TimeUnit.SECONDS.sleep(timeNumber);
        }catch (InterruptedException e){
            e.printStackTrace();
        }
        return "线程池:  " + Thread.currentThread().getName() + " paymentInfo_TimeOUt,id:   " + id + "O(∩_∩)O哈哈哈~~~" + "耗时(秒):" + timeNumber;
    }
}

controller

@RestController
@Slf4j
public class PaymentController {
    @Resource
    private PaymentService paymentService;

    @Value("{server.port}")
    private String port;

    @GetMapping("/payment/hystrix/ok/{id}")
    public String paymentInfo_OK(@PathVariable("id") Integer id){
        String result = paymentService.paymentInfo_OK(id);
        log.info("*****result:"+result);
        return result;
    }

    @GetMapping("/payment/hystrix/timeout/{id}")
    public String paymentInfo_TimeOut(@PathVariable("id") Integer id) {
        String result = paymentService.paymentInfo_TimeOut(id);
        log.info("*****result:"+result);
        return result;
    }
}

1.启动eureka7001,7002,7004;

2.启动cloud-provider-hystrix-payment8001

3.访问success的方法 http://localhost:8001/payment/hystrix/ok/31

4.访问超时的方法(每次调用耗费5秒钟):http://localhost:8001/payment/hystrix/timeout/31

5.上述module均OK

image-20220103114629745

image-20220103114718609

6.以上述为根基平台,从正确->错误->降级熔断->恢复

上述在非高并发情形下,还能勉强满足 but…

Jmeter压测测试

1.开启Jmeter,来20000个并发压死8001,20000个请求都去访问paymentInfo_TimeOut服务

image-20220107151946315

2.再来一个访问 http://localhost:8001/payment/hystrix/ok/31

两个都在自己转圈圈

image-20220103165911944

原因:tomcat的默认的工作线程数被打满 了,没有多余的线程来分解压力和处理。

Jmeter压测结论:上面还是服务提供者8001自己测试,假如此时外部的消费者80也来访问,
那消费者只能干等,最终导致消费端80不满意,服务端8001直接被拖死.

7.3.2 构建消费者order80

<dependencies>
        <!--openfeign-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-openfeign</artifactId>
        </dependency>
        <!--hystrix-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
        </dependency>
        <!--eureka client-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
        </dependency>
        <!-- 引入自己定义的api通用包,可以使用Payment支付Entity -->
        <dependency>
            <groupId>com.atguigu.springcloud</groupId>
            <artifactId>cloud-api-commons</artifactId>
            <version>${project.version}</version>
        </dependency>
        <!--web-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <!--一般基础通用配置-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
server:
  port: 80

spring:
  application:
    name: cloud-feign-hystrix-order-service


eureka:
  client:
    register-with-eureka: true
    service-url:
      defaultZone: http://eureka7001.com:7001/eureka,http://eureka7002.com:7002/eureka,http://eureka7004.com:7004/eureka  # 集群版
@SpringBootApplication
@EnableFeignClients
public class OrderHystrixMain80
{
    public static void main(String[] args)
    {
        SpringApplication.run(OrderHystrixMain80.class,args);
    }
}

PaymentHystrixService

@Component
@FeignClient(value = "CLOUD-PROVIDER-HYSTRIX-PAYMENT")
public interface PaymentHystrixService
{
    @GetMapping("/payment/hystrix/ok/{id}")
    String paymentInfo_OK(@PathVariable("id") Integer id);

    @GetMapping("/payment/hystrix/timeout/{id}")
    String paymentInfo_TimeOut(@PathVariable("id") Integer id);
}

OrderHystirxController

@RestController
@Slf4j
public class OrderHystirxController
{
    @Resource
    private PaymentHystrixService paymentHystrixService;

    @GetMapping("/consumer/payment/hystrix/ok/{id}")
    public String paymentInfo_OK(@PathVariable("id") Integer id)
    {
        String result = paymentHystrixService.paymentInfo_OK(id);
        return result;
    }

    @GetMapping("/consumer/payment/hystrix/timeout/{id}")
    public String paymentInfo_TimeOut(@PathVariable("id") Integer id)
    {
        String result = paymentHystrixService.paymentInfo_TimeOut(id);
        return result;
    }
}

正常测试:http://localhost/consumer/payment/hystrix/ok/31

高并发测试:

1.2W个线程压8001

2.消费端80微服务再去访问正常的Ok微服务8001地址 http://localhost/consumer/payment/hystrix/ok/32

消费者80,o(╥﹏╥)o 要么转圈圈等待,要么消费端报超时错误

image-20220107153248075

7.3.3 故障现象和解决方法

8001同一层次的其它接口服务被困死,因为tomcat线程池里面的工作线程已经被挤占完毕.80此时调用8001,客户端访问响应缓慢,转圈圈

结论:正因为有上述故障或不佳表现才有我们的降级/容错/限流等技术诞生

如何解决?解决的要求

解决:

7.4 服务降级

8001先从自身找问题:

设置自身调用超时时间的峰值,峰值内可以正常运行,超过了需要有兜底的方法处理,作服务降级fallback

7.4.1 8001fallback处理

@Service
public class PaymentServiceImpl implements PaymentService {
    /**
     * 正常访问,返回OK
     * @param id
     * @return
     */
    @Override
    public String paymentInfo_OK(Integer id) {
        return "线程池:  "+Thread.currentThread().getName()+" paymentInfo_OK,id:   "+id+"O(∩_∩)O哈哈哈~~~";
    }

    /**
     * 超时访问
     * @param id
     * @return
     */
    @HystrixCommand(fallbackMethod = "paymentInfo_TimeOutHandler",commandProperties = {
            @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "3000")
    })
    public String paymentInfo_TimeOut(Integer id) {

        int timeNumber = 5;
        // int a  =  10 / 0;
        try {
            TimeUnit.SECONDS.sleep(timeNumber);
        }catch (InterruptedException e){
            e.printStackTrace();
        }
        return "线程池:  " + Thread.currentThread().getName() + " paymentInfo_TimeOUt,id:   " + id + "O(∩_∩)O哈哈哈~~~" + "耗时(秒):" + timeNumber;
    }

    public String paymentInfo_TimeOutHandler(Integer id){
        return "线程池:  " + Thread.currentThread().getName() + " 8001系统繁忙或者运行报错,请稍后再试,id: " + id + "\t"+"o(╥﹏╥)o呜呜呜"  ;
    }
}

@HystrixCommand报异常后如何处理?

一旦调用服务方法失败并抛出了错误信息后,会自动调用@HystrixCommand标注好的fallbackMethod调用类中的指定方法

image-20220107154639947

上图故意制造两个异常:
1 int age = 10/0; 计算异常
2 我们能接受3秒钟,它运行5秒钟,超时异常。

当前服务不可用了,做服务降级,兜底的方案都是paymentInfo_TimeOutHandler

7.4.2 80fallback

80订单微服务,也可以更好的保护自己,自己也依样画葫芦进行客户端降级保护

feign:
  hystrix:
    enabled: true
@SpringBootApplication
@EnableFeignClients
@EnableHystrix
public class OrderHystrixMain80
{
    public static void main(String[] args)
    {
        SpringApplication.run(OrderHystrixMain80.class,args);
    }
}
@RestController
@Slf4j
public class OrderHystrixController {

    @Resource
    private PaymentHystrixService paymentHystrixService;

    @GetMapping("/consumer/payment/hystrix/ok/{id}")
    public String paymentInfo_OK(@PathVariable("id") Integer id){
        return paymentHystrixService.paymentInfo_OK(id);
    }

    @GetMapping("/consumer/payment/hystrix/timeout/{id}")
    @HystrixCommand(fallbackMethod = "paymentTimeOutFallbackMethod",commandProperties = {
             @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "1500")
     })
    public String paymentInfo_TimeOut(@PathVariable("id") Integer id) {
        // int age = 10 / 0;
        return paymentHystrixService.paymentInfo_TimeOut(id);
    }

    public String paymentTimeOutFallbackMethod(@PathVariable("id") Integer id){
        return "我是消费者80,对方支付系统繁忙请10s后再试或者自己运行出错请检查自己,o(╥﹏╥)o";
    }

备注:我们自己配置过的热部署方式对java代码的改动明显,但对@HystrixCommand内属性的修改建议重启微服

7.4.3 存在的问题以及解决方案

存在的问题:

  1. 每个业务方法对应一个兜底的方法,代码膨胀

  2. 统一和自定义的分开

解决方案:

  1. 每个方法配置一个???膨胀==>需要对相同功能的进行抽取. 可以使用**@DefaultProperties(defaultFallback="" )**

使用说明:

1:1 每个方法配置一个服务降级方法,技术上可以,实际上傻X

1:N 除了个别重要核心业务有专属,其它普通的可以通过@DefaultProperties(defaultFallback = “”) 统一跳转到统一处理结果页面

通用的和独享的各自分开,避免了代码膨胀,合理减少了代码量,O(∩_∩)O哈哈~

controller配置

@RestController
@Slf4j
@DefaultProperties(defaultFallback = "payment_Global_FallbackMethod")
public class OrderHystrixController {

    @Resource
    private PaymentHystrixService paymentHystrixService;

    @GetMapping("/consumer/payment/hystrix/ok/{id}")
    public String paymentInfo_OK(@PathVariable("id") Integer id){
        return paymentHystrixService.paymentInfo_OK(id);
    }

    @GetMapping("/consumer/payment/hystrix/timeout/{id}")
    // @HystrixCommand(fallbackMethod = "paymentTimeOutFallbackMethod",commandProperties = {
    //         @HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "1500")
    // })
    @HystrixCommand //加了DefaultProperties注解,并且没有写具体方法名字,就使用统一全局的fallback
    public String paymentInfo_TimeOut(@PathVariable("id") Integer id) {
        // int age = 10 / 0;
        return paymentHystrixService.paymentInfo_TimeOut(id);
    }

    public String paymentTimeOutFallbackMethod(@PathVariable("id") Integer id){
        return "我是消费者80,对方支付系统繁忙请10s后再试或者自己运行出错请检查自己,o(╥﹏╥)o";
    }

    public String payment_Global_FallbackMethod(){
        return "Global异常处理信息,请稍后信息,o(╥﹏╥)o";
    }
}

image-20220107160333271

2.和业务逻辑混一起???混乱 ==>需要进行解耦,把逻辑和服务降级代码分开

本次案例服务降级处理是在客户端80实现完成的,与服务端8001没有关系,只需要为Feign客户端定义的接口添加一个服务降级处理的实现类即可实现解耦

未来我们要面对的异常:运行,超时,宕机

image-20220107163559641

@Component
public class PaymentFallbackService implements PaymentHystrixService{
    @Override
    public String paymentInfo_OK(Integer id) {
        return "-----PaymentFallbackService fall back-paymentInfo_OK,o(╥﹏╥)o";
    }
    @Override
    public String paymentInfo_TimeOut(Integer id) {
        return "-----PaymentFallbackService fall back-paymentInfo_Timeout,o(╥﹏╥)o";
    }
}
@Component
@FeignClient(value = "CLOUD-PROVIDER-HYSTRIX-PAYMENT",fallback = PaymentFallbackService.class)
public interface PaymentHystrixService {

    @GetMapping("/payment/hystrix/ok/{id}")
    public String paymentInfo_OK(@PathVariable("id") Integer id);

    @GetMapping("/payment/hystrix/timeout/{id}")
    public String paymentInfo_TimeOut(@PathVariable("id") Integer id) ;
}
  1. 单个eureka先启动7001,7002,7003

  2. PaymentHystrixMain8001启动

  3. 正常访问测试,访问 http://localhost/consumer/payment/hystrix/ok/31

  4. 故意关闭微服务8001

  5. 客户端自己调用提示:此时服务端provider已经down了,但是我们做了服务降级处理,
    让客户端在服务端不可用时也会获得提示信息而不会挂起耗死服务器

image-20220104214142470

image-20220104214314990

7.5 服务熔断

断路器:一句话就是家里的保险丝

7.5.1 熔断是什么

熔断机制概述
熔断机制是应对雪崩效应的一种微服务链路保护机制当扇出链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。
当检测到该节点微服务调用响应正常后,恢复调用链路。

在Spring Cloud框架里,熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,
当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制。熔断机制的注解是**@HystrixCommand。**

大神的论文:https://martinfowler.com/bliki/CircuitBreaker.html

7.5.2 实操

//===服务熔断
    @HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = {
            @HystrixProperty(name = "circuitBreaker.enabled",value = "true"),//是否开启断路器
            @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"),//请求次数  当在配置时间窗口内达到此数量的失败后,进行短路。默认20个
            @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"),//时间窗口期,也等于短路多久以后开始尝试是否恢复的时间. 默认5s
            @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"),//出错百分比阈值,失败率达到此阈值后,开始短路跳闸。默认50%
    })
    public String paymentCircuitBreaker(@PathVariable("id") Integer id){
        if(id<0){
            throw new RuntimeException("*******id 不能为负数");
        }
        String serialNumber = IdUtil.simpleUUID();
        return Thread.currentThread().getName()+"\t"+"调用成功,流水号:"+serialNumber;

    }

    public String paymentCircuitBreaker_fallback(@PathVariable("id") Integer id){
        return "id 不能为负数,请稍后再试,o(╥﹏╥)o id:"+id;
    }

why配置这些参数

图像

 @GetMapping("/payment/circuit/{id}")
    public String paymentCircuitBreaker(@PathVariable("id") Integer id)
    {
        String result = paymentService.paymentCircuitBreaker(id);
        log.info("****result: "+result);
        return result;
    }

正确: http://localhost:8001/payment/circuit/31

错误: http://localhost:8001/payment/circuit/31

image-20220105223927990

image-20220105224059996

一次正确一次错误trytry.

多次错误,然后慢慢正确,发现刚开始不满足条件,就算是正确的访问地址也不能进行

image-20220105225931624

7.5.3 原理(小总结)

大神结论:

image-20220107165553842

熔断类型:

官网断路器流程图

image-20220107170157353

image-20220107165804353

image-20220107165837911

涉及到断路器的三个重要参数:快照时间窗、请求总数阀值、错误百分比阀值。
1:快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒。

2:请求总数阀值:在快照时间窗内,必须满足请求总数阀值才有资格熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用次数不足20次,即使所有的请求都超时或其他原因失败,断路器都不会打开。

3:错误百分比阀值:当请求总数在快照时间窗内超过了阀值,比如发生了30次调用,如果在这30次调用中,有15次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%阀值情况下,这时候就会将断路器打开。

1.当满足一定的阀值的时候(默认10秒内超过20个请求次数)

2.当失败率达到一定的时候(默认10秒内超过50%的请求失败)

3.到达以上阀值,断路器将会开启

4.当开启的时候,所有请求都不会进行转发

5.一段时间之后(默认是5秒),这个时候断路器是半开状态,会让其中一个请求进行转发。如果成功,断路器会关闭,若失败,继续开启。重复4和5

1:再有请求调用的时候,将不会调用主逻辑,而是直接调用降级fallback。通过断路器,实现了自动地发现错误并将降级逻辑切换为主逻辑,减少响应延迟的效果。

2:原来的主逻辑要如何恢复呢?
对于这一问题,hystrix也为我们实现了自动恢复功能。
当断路器打开,对主逻辑进行熔断之后,hystrix会启动一个休眠时间窗,在这个时间窗内,降级逻辑是临时的成为主逻辑,
当休眠时间窗到期,断路器将进入半开状态,释放一次请求到原来的主逻辑上,如果此次请求正常返回,那么断路器将继续闭合,
主逻辑恢复,如果这次请求依然有问题,断路器继续进入打开状态,休眠时间窗重新计时。

//========================All
@HystrixCommand(fallbackMethod = "str_fallbackMethod",
        groupKey = "strGroupCommand",
        commandKey = "strCommand",
        threadPoolKey = "strThreadPool",

        commandProperties = {
                // 设置隔离策略,THREAD 表示线程池 SEMAPHORE:信号池隔离
                @HystrixProperty(name = "execution.isolation.strategy", value = "THREAD"),
                // 当隔离策略选择信号池隔离的时候,用来设置信号池的大小(最大并发数)
                @HystrixProperty(name = "execution.isolation.semaphore.maxConcurrentRequests", value = "10"),
                // 配置命令执行的超时时间
                @HystrixProperty(name = "execution.isolation.thread.timeoutinMilliseconds", value = "10"),
                // 是否启用超时时间
                @HystrixProperty(name = "execution.timeout.enabled", value = "true"),
                // 执行超时的时候是否中断
                @HystrixProperty(name = "execution.isolation.thread.interruptOnTimeout", value = "true"),
                // 执行被取消的时候是否中断
                @HystrixProperty(name = "execution.isolation.thread.interruptOnCancel", value = "true"),
                // 允许回调方法执行的最大并发数
                @HystrixProperty(name = "fallback.isolation.semaphore.maxConcurrentRequests", value = "10"),
                // 服务降级是否启用,是否执行回调函数
                @HystrixProperty(name = "fallback.enabled", value = "true"),
                // 是否启用断路器
                @HystrixProperty(name = "circuitBreaker.enabled", value = "true"),
                // 该属性用来设置在滚动时间窗中,断路器熔断的最小请求数。例如,默认该值为 20 的时候,
                // 如果滚动时间窗(默认10秒)内仅收到了19个请求, 即使这19个请求都失败了,断路器也不会打开。
                @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold", value = "20"),
                // 该属性用来设置在滚动时间窗中,表示在滚动时间窗中,在请求数量超过
                // circuitBreaker.requestVolumeThreshold 的情况下,如果错误请求数的百分比超过50,
                // 就把断路器设置为 "打开" 状态,否则就设置为 "关闭" 状态。
                @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "50"),
                // 该属性用来设置当断路器打开之后的休眠时间窗。 休眠时间窗结束之后,
                // 会将断路器置为 "半开" 状态,尝试熔断的请求命令,如果依然失败就将断路器继续设置为 "打开" 状态,
                // 如果成功就设置为 "关闭" 状态。
                @HystrixProperty(name = "circuitBreaker.sleepWindowinMilliseconds", value = "5000"),
                // 断路器强制打开
                @HystrixProperty(name = "circuitBreaker.forceOpen", value = "false"),
                // 断路器强制关闭
                @HystrixProperty(name = "circuitBreaker.forceClosed", value = "false"),
                // 滚动时间窗设置,该时间用于断路器判断健康度时需要收集信息的持续时间
                @HystrixProperty(name = "metrics.rollingStats.timeinMilliseconds", value = "10000"),
                // 该属性用来设置滚动时间窗统计指标信息时划分"桶"的数量,断路器在收集指标信息的时候会根据
                // 设置的时间窗长度拆分成多个 "桶" 来累计各度量值,每个"桶"记录了一段时间内的采集指标。
                // 比如 10 秒内拆分成 10 个"桶"收集这样,所以 timeinMilliseconds 必须能被 numBuckets 整除。否则会抛异常
                @HystrixProperty(name = "metrics.rollingStats.numBuckets", value = "10"),
                // 该属性用来设置对命令执行的延迟是否使用百分位数来跟踪和计算。如果设置为 false, 那么所有的概要统计都将返回 -1。
                @HystrixProperty(name = "metrics.rollingPercentile.enabled", value = "false"),
                // 该属性用来设置百分位统计的滚动窗口的持续时间,单位为毫秒。
                @HystrixProperty(name = "metrics.rollingPercentile.timeInMilliseconds", value = "60000"),
                // 该属性用来设置百分位统计滚动窗口中使用 “ 桶 ”的数量。
                @HystrixProperty(name = "metrics.rollingPercentile.numBuckets", value = "60000"),
                // 该属性用来设置在执行过程中每个 “桶” 中保留的最大执行次数。如果在滚动时间窗内发生超过该设定值的执行次数,
                // 就从最初的位置开始重写。例如,将该值设置为100, 滚动窗口为10秒,若在10秒内一个 “桶 ”中发生了500次执行,
                // 那么该 “桶” 中只保留 最后的100次执行的统计。另外,增加该值的大小将会增加内存量的消耗,并增加排序百分位数所需的计算时间。
                @HystrixProperty(name = "metrics.rollingPercentile.bucketSize", value = "100"),
                // 该属性用来设置采集影响断路器状态的健康快照(请求的成功、 错误百分比)的间隔等待时间。
                @HystrixProperty(name = "metrics.healthSnapshot.intervalinMilliseconds", value = "500"),
                // 是否开启请求缓存
                @HystrixProperty(name = "requestCache.enabled", value = "true"),
                // HystrixCommand的执行和事件是否打印日志到 HystrixRequestLog 中
                @HystrixProperty(name = "requestLog.enabled", value = "true"),
        },
        threadPoolProperties = {
                // 该参数用来设置执行命令线程池的核心线程数,该值也就是命令执行的最大并发量
                @HystrixProperty(name = "coreSize", value = "10"),
                // 该参数用来设置线程池的最大队列大小。当设置为 -1 时,线程池将使用 SynchronousQueue 实现的队列,
                // 否则将使用 LinkedBlockingQueue 实现的队列。
                @HystrixProperty(name = "maxQueueSize", value = "-1"),
                // 该参数用来为队列设置拒绝阈值。 通过该参数, 即使队列没有达到最大值也能拒绝请求。
                // 该参数主要是对 LinkedBlockingQueue 队列的补充,因为 LinkedBlockingQueue
                // 队列不能动态修改它的对象大小,而通过该属性就可以调整拒绝请求的队列大小了。
                @HystrixProperty(name = "queueSizeRejectionThreshold", value = "5"),
        }
)
public String strConsumer() {
    return "hello 2020";
}
public String str_fallbackMethod()
{
    return "*****fall back str_fallbackMethod";
}

7.6 服务限流

后面高级篇讲解alibaba的Sentinel说明

7.7 hystrix工作流程

https://github.com/Netflix/Hystrix/wiki/How-it-Works

官网图例

image-20220109141939147

image-20220109142214844

tips:如果我们没有为命令实现降级逻辑或者在降级处理逻辑中抛出了异常, Hystrix 依然会返回一个 Observable 对象, 但是它不会发射任何结果数据, 而是通过 one rror 方法通知命令立即中断请求,并通过onError()方法将引起命令失败的异常发送给调用者。

7.8 服务监控hystrixDashboard

7.8.1 概述

除了隔离依赖服务的调用以外,Hystrix还提供了准实时的调用监控(Hystrix Dashboard),Hystrix会持续地记录所有通过Hystrix发起的请求的执行信息,并以统计报表和图形的形式展示给用户,包括每秒执行多少请求多少成功,多少失败等。Netflix通过hystrix-metrics-event-stream项目实现了对以上指标的监控。Spring Cloud也提供了Hystrix Dashboard的整合,对监控内容转化成可视化界面。

7.8.2 仪表盘9001

 <dependencies>
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
server:
  port: 9001
spring:
  application:
    name: cloud-order-dashboard
@SpringBootApplication
@EnableHystrixDashboard
public class HystrixDashboardMain9001 {
    public static void main(String[] args) {
        SpringApplication.run(HystrixDashboardMain9001.class, args);
    }
}
   <!-- actuator监控信息完善 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

访问 http://localhost:9001/hystrix

image-20220109142724556

7.8.3 断路器演示(服务监控hystrixDashboard)

修改cloud-provider-hystrix-payment8001,新版本Hystrix需要在主启动类MainAppHystrix8001中指定监控路径. 否则可能出现Unable to connect to Command Metric Stream. 或者404错误

@SpringBootApplication
@EnableEurekaClient //本服务启动后会自动注册进eureka服务中
@EnableCircuitBreaker//对hystrixR熔断机制的支持
public class MainAppHystrix8001
{
    public static void main(String[] args)
    {
        SpringApplication.run(MainAppHystrix8001.class,args);
    }

/**
 *此配置是为了服务监控而配置,与服务容错本身无关,springcloud升级后的坑
 *ServletRegistrationBean因为springboot的默认路径不是"/hystrix.stream",
 *只要在自己的项目里配置上下面的servlet就可以了
 */
@Bean
public ServletRegistrationBean getServlet() {
    HystrixMetricsStreamServlet streamServlet = new HystrixMetricsStreamServlet();
    ServletRegistrationBean registrationBean = new ServletRegistrationBean(streamServlet);
    registrationBean.setLoadOnStartup(1);
    registrationBean.addUrlMappings("/hystrix.stream");
    registrationBean.setName("HystrixMetricsStreamServlet");
    return registrationBean;
}

}

监控测试

启动3个eureka集群后,观察监控窗口

image-20220109143218120

检测结果,访问失败地址

image-20220109143520973

如何看?

实心圆:共有两种含义。它通过颜色的变化代表了实例的健康程度,它的健康度从绿色<黄色<橙色<红色递减。
该实心圆除了颜色的变化之外,它的大小也会根据实例的请求流量发生变化,流量越大该实心圆就越大。所以通过该实心圆的展示,就可以在大量的实例中快速的发现故障实例和高压力实例。

曲线:用来记录2分钟内流量的相对变化,可以通过它来观察到流量的上升和下降趋势。

image-20220109144025512

image-20220109144040468

image-20220109144102226

标签:paymentInfo,服务,Hystrix,hystrix,SpringCloud,id,Day04,public,String
来源: https://blog.csdn.net/LXYDSF/article/details/122395669