其他分享
首页 > 其他分享> > 布隆过滤器详解(BloomFilter)以及其实现介绍

布隆过滤器详解(BloomFilter)以及其实现介绍

作者:互联网

一、 三种去重方式

二、布隆过滤器介绍

布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提出,它是一种space efficient的概率型数据结构,用于判断一个元素是否在集合中。在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。
哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能完成同样的问题。布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,误报率越大,但是漏报是不可能的。

原理:
布隆过滤器需要的是一个位数组(和位图类似)和K个映射函数(和Hash表类似),在初始状态时,对于长度为m的位数组array,它的所有位被置0。

在这里插入图片描述

对于有n个元素的集合S={S1,S2…Sn},通过k个映射函数{f1,f2,…fk},将集合S中的每个元素Sj(1<=j<=n)映射为K个值{g1,g2…gk},然后再将位数组array中相对应的array[g1],array[g2]…array[gk]置为1:

在这里插入图片描述

如果要查找某个元素item是否在S中,则通过映射函数{f1,f2,…fk}得到k个值{g1,g2…gk},然后再判断array[g1],array[g2]…array[gk]是否都为1,若全为1,则item在S中,否则item不在S中。

布隆过滤器会造成一定的误判,因为集合中的若干个元素通过映射之后得到的数值恰巧包括g1,g2,…gk,在这种情况下可能会造成误判,但是概率很小。

三、布隆过滤器实现

//布隆过滤器
public class BloomFilter {

   /* BitSet初始分配2^24个bit */
   private static final int DEFAULT_SIZE = 1 << 24;

   /* 不同哈希函数的种子,一般应取质数 */
   private static final int[] seeds = new int[] { 5, 7, 11, 13, 31, 37 };

   private BitSet bits = new BitSet(DEFAULT_SIZE);

   /* 哈希函数对象 */
   private SimpleHash[] func = new SimpleHash[seeds.length];

   public BloomFilter() {
      for (int i = 0; i < seeds.length; i++) {
         func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
      }
   }

   // 将url标记到bits中
   public void add(String str) {
      for (SimpleHash f : func) {
         bits.set(f.hash(str), true);
      }
   }

   // 判断是否已经被bits标记
   public boolean contains(String str) {
      if (StringUtils.isBlank(str)) {
         return false;
      }

      boolean ret = true;
      for (SimpleHash f : func) {
         ret = ret && bits.get(f.hash(str));
      }

      return ret;
   }

   /* 哈希函数类 */
   public static class SimpleHash {
      private int cap;
      private int seed;

      public SimpleHash(int cap, int seed) {
         this.cap = cap;
         this.seed = seed;
      }

      // hash函数,采用简单的加权和hash
      public int hash(String value) {
         int result = 0;
         int len = value.length();
         for (int i = 0; i < len; i++) {
            result = seed * result + value.charAt(i);
         }
         return (cap - 1) & result;
      }
   }
}

标签:int,元素,布隆,SimpleHash,详解,过滤器,BloomFilter,public
来源: https://blog.csdn.net/weixin_45829957/article/details/122393199