数据插补—拉格朗日插值法
作者:互联网
数据分析
数据清洗:缺失值处理、1删除记录 2数据插补 3不处理
数据在https://book.tipdm.org/jc/219 中的资源包中数据和代码chapter4\demo\data\catering_sale.xls
常见插补方法
插值法-拉格朗日插值法
根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上可以找到n-1次多项式
,使次多项式曲线过这n个点。
1)求已知过n个点的n-1次多项式:
将n个点的坐标带入多项式:得到
解出拉格朗日插值多项式:
将缺失的函数值对应的点x带入多项式得到趋势值得近似值L(x)
#拉格朗日插值代码
import pandas as pd #导入数据分析库Pandas
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import lagrange #导入拉格朗日插值函数
inputfile = '../data/catering_sale.xls' #销量数据路径
outputfile = '../tmp/sales.xls' #输出数据路径
data = pd.read_excel(inputfile) #读入数据
temp = data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] #找到不符合要求得值 data[列][行]
for i in range(temp.shape[0]):
data.loc[temp.index[i],u'销量'] = np.nan #把不符合要求得值变为空值
#自定义列向量插值函数
#s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5
def ployinterp_column(s, n, k=5):
y = s.iloc[list(range(n-k, n)) + list(range(n+1, n+1+k))] #取数 就是传入得data
y = y[y.notnull()] #剔除空值
f = lagrange(y.index, list(y))
return f(n) #插值并返回插值结果
#逐个元素判断是否需要插值
for i in data.columns:
for j in range(len(data)):
if (data[i].isnull())[j]: #如果为空即插值。
data.loc[j,i] = ployinterp_column(data[i], j)
data.to_excel(outputfile) #输出结果,写入文件
print("success")
运行结果:
这个代码是可以运行的
也没有
报SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
我也不知道时怎么把这个警告消除的,反正就是找啊找,在我不注意的时候能运行了!好像是不能一下多个赋值,要分开赋值。
但是我们细看可以发现插入的值有问题:把插入的值输出可以看到有一个异常值
我们在处理数据时把小于400,大于5000的值都变成空值,然后通过拉格朗日插值法插入值,想要把数据没有那么大的差值,但是给我们插入一个负数,并且很离谱。我检查了一下并没有发现哪里有错误;然后我把用到的数据和拟合出来的拉格朗日函数输出得到:
f=-0.008874 x + 11.53 x - 6657 x + 2.242e+06 x - 4.854e+08 x + 7.005e+10 x - 6.74e+12 x + 4.168e+14 x - 1.504e+16 x + 2.411e+17
并没有发现问题,让后我就想着是不是拟合出来的函数步够精确,我把取点增加,但是都没有好的结果,反而更离谱。
最后我把取值点减小发现上下取点4个时都会有一个好的结果,上下去点为3,2,1(直线,不建议取)时也都还能接受。所以我么拟合出来的五个上下点时也并没有错,只是它拟合出来的函数就是在那个点上数值离谱。
标签:拉格朗,数据,插值法,多项式,插值,插补,data 来源: https://www.cnblogs.com/hjk-airl/p/15766870.html