其他分享
首页 > 其他分享> > TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

作者:互联网

 从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作。这次我们要解决机器学习的经典问题,MNIST手写数字识别。

首先介绍一下数据集。请首先解压:TF_Net\Asset\mnist_png.tar.gz文件

 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中。

程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元分类,有几点不一样。

1、BMI程序的特征数据(输入)为一维数组,包含两个数字,MNIST的特征数据为28*28的二位数组;

2、BMI程序的输出为3个,MNIST的输出为10个;

 

网络模型构建如下:

        private readonly int img_rows = 28;
        private readonly int img_cols = 28;
        private readonly int num_classes = 10;  // total classes
        /// <summary>
        /// 构建网络模型
        /// </summary>     
        private Model BuildModel()
        {
            // 网络参数          
            int n_hidden_1 = 128;    // 1st layer number of neurons.     
            int n_hidden_2 = 128;    // 2nd layer number of neurons.                                
            float scale = 1.0f / 255;

            var model = keras.Sequential(new List<ILayer>
            {
                keras.layers.InputLayer((img_rows,img_cols)),
                keras.layers.Flatten(),
                keras.layers.Rescaling(scale),
                keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu),
                keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu),
                keras.layers.Dense(num_classes, activation:keras.activations.Softmax)
            });

            return model;
        }

这个网络里用到了两个新方法,需要解释一下:

1、Flatten方法:这里表示拉平,把28*28的二维数组拉平为含784个数据的一维数组,因为二维数组无法进行运算;

2、Rescaling 方法:就是对每个数据乘以一个系数,因为我们从图片获取的数据为每一个位点的灰度值,其取值范围为0~255,所以乘以一个系数将数据缩小到1以内,以免后面运算时溢出。

 

其它基本和上一篇文章介绍的差不多,全部代码如下:

    /// <summary>
    /// 通过神经网络来实现多元分类
    /// </summary>
    public class NN_MultipleClassification_BMI
    {
        private readonly Random random = new Random(1);

        // 网络参数
        int num_features = 2; // data features       
        int num_classes = 3;  // total output .

        public void Run()
        {
            var model = BuildModel();
            model.summary();          

            Console.WriteLine("Press any key to continue...");
            Console.ReadKey();

            (NDArray train_x, NDArray train_y) = PrepareData(1000);
            model.compile(optimizer: keras.optimizers.Adam(0.001f),
              loss: keras.losses.SparseCategoricalCrossentropy(),
              metrics: new[] { "accuracy" });
            model.fit(train_x, train_y, batch_size: 128, epochs: 300);

            test(model);
        }

        /// <summary>
        /// 构建网络模型
        /// </summary>     
        private Model BuildModel()
        {
            // 网络参数          
            int n_hidden_1 = 64; // 1st layer number of neurons.     
            int n_hidden_2 = 64; // 2nd layer number of neurons.           

            var model = keras.Sequential(new List<ILayer>
            {
                keras.layers.InputLayer(num_features),
                keras.layers.Dense(n_hidden_1, activation:keras.activations.Relu),
                keras.layers.Dense(n_hidden_2, activation:keras.activations.Relu),
                keras.layers.Dense(num_classes, activation:keras.activations.Softmax)
            });

            return model;
        }

        /// <summary>
        /// 加载训练数据
        /// </summary>
        /// <param name="total_size"></param>    
        private (NDArray, NDArray) PrepareData(int total_size)
        {
            float[,] arrx = new float[total_size, num_features];
            int[] arry = new int[total_size];

            for (int i = 0; i < total_size; i++)
            {
                float weight = (float)random.Next(30, 100) / 100;
                float height = (float)random.Next(140, 190) / 100;
                float bmi = (weight * 100) / (height * height);

                arrx[i, 0] = weight;
                arrx[i, 1] = height;

                switch (bmi)
                {
                    case var x when x < 18.0f:
                        arry[i] = 0;
                        break;

                    case var x when x >= 18.0f && x <= 28.0f:
                        arry[i] = 1;
                        break;

                    case var x when x > 28.0f:
                        arry[i] = 2;
                        break;
                }
            }

            return (np.array(arrx), np.array(arry));
        }

        /// <summary>
        /// 消费模型
        /// </summary>      
        private void test(Model model)
        {
            int test_size = 20;
            for (int i = 0; i < test_size; i++)
            {
                float weight = (float)random.Next(40, 90) / 100;
                float height = (float)random.Next(145, 185) / 100;
                float bmi = (weight * 100) / (height * height);

                var test_x = np.array(new float[1, 2] { { weight, height } });
                var pred_y = model.Apply(test_x);

                Console.WriteLine($"{i}:weight={(float)weight} \theight={height} \tBMI={bmi:0.0} \tPred:{pred_y[0].numpy()}");
            }
        }
    }
View Code

另有两点说明:

1、由于对图片的读取比较耗时,所以我采用了一个方法,就是把读取到的数据序列化到一个二进制文件中,下次直接从二进制文件反序列化即可,大大加快处理速度。

2、我没有采用validation图片进行评估,只是简单选了20个样本测试了一下。

 

【相关资源】

 源码:Git: https://gitee.com/seabluescn/tf_not.git

项目名称:NN_MultipleClassification_MNIST

目录:查看TensorFlow.NET机器学习入门系列目录

标签:layers,keras,int,float,height,TensorFlow,NET,model,MNIST
来源: https://www.cnblogs.com/seabluescn/p/15592834.html