3、SystemInit时钟配置分析
作者:互联网
1、新建工程之后,第一个最重要的文件就是启动文件” startup_stm32f10x_xd.s”,它是汇编文件,主要做了:
1)初始化堆栈内存空间
2)设置PC寄存器的地址指向Reset_Handler,即上电便运行复位程序
3)设置向量表,中断服务函数入口地址
4)配置系统时钟SystemInit
5) 运行外部的函数,LDR R0, =__main;即:开始运行c库,并最终调用用户编写的C程序main函数
3、其他的都不管,只分析配置系统时钟SystemInit的过程
4、找到下面指令:LDR R0, =SystemInit
5、跳转到该函数(编译后,按F12)
6、void SystemInit (void)函数如下:
/**
* @brief Setup the microcontroller system
* Initialize the Embedded Flash Interface, the PLL and update the
* SystemCoreClock variable.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
void SystemInit (void)
{
/* Reset the RCC clock configuration to the default reset state(for debug purpose) */
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
RCC->CFGR &= (uint32_t)0xFF80FFFF;
#ifdef STM32F10X_CL
/* Reset PLL2ON and PLL3ON bits */
RCC->CR &= (uint32_t)0xEBFFFFFF;
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x00FF0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#else
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
#ifdef DATA_IN_ExtSRAM
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM */
#endif
/* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
/* Configure the Flash Latency cycles and enable prefetch buffer */
SetSysClock();
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
}
分析这段代码需要打开《STM32中文参考手册_V10.pdf》第6.3小节:
1、RCC->CR |= (uint32_t)0x00000001;//把RCC_CR寄存器的第0位置1:打开HSI
2、#ifndef STM32F10X_CL//定义模板时用的是STM32F10X_MD,所以,会执行else
3、RCC->CFGR &= (uint32_t)0xF0FF0000;//复位一些位(保持寄存器的初始状态)
4、RCC->CR &= (uint32_t)0xFEF6FFFF;//同上
5、 RCC->CR &= (uint32_t)0xFFFBFFFF;//
6、 RCC->CFGR &= (uint32_t)0xFF80FFFF;//
7、RCC->CIR = 0x009F0000;//关闭所有中断,清除所有中断标志位
8、 SetSysClock();//设置系统时钟函数
7、SetSysClock();//设置系统时钟函数,F12跳转
/**
* @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.
* @param None
* @retval None
*/
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSE
SetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHz
SetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHz
SetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHz
SetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHz
SetSysClockTo56();
#elif defined SYSCLK_FREQ_72MHz
SetSysClockTo72();
#endif
/* If none of the define above is enabled, the HSI is used as System clock
source (default after reset) */
}
通过判断一些标识符有没有定义,去执行不同的函数
通过F12跳转发现只有:#elif defined SYSCLK_FREQ_72MHz能被编译器找到
#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
#define SYSCLK_FREQ_24MHz 24000000
#else
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz 24000000 */
/* #define SYSCLK_FREQ_36MHz 36000000 */
/* #define SYSCLK_FREQ_48MHz 48000000 */
/* #define SYSCLK_FREQ_56MHz 56000000 */
#define SYSCLK_FREQ_72MHz 72000000
#endif
也就是说,官方默认配置的系统时钟是72MHz
[如果要设置其他频率,只需屏蔽72M,打开需要的相应频率即可]
接下来会执行:
#elif defined SYSCLK_FREQ_72MHz
SetSysClockTo72();
8、继续跳转 SetSysClockTo72();【重点!!!】
#elif defined SYSCLK_FREQ_72MHz
/**
* @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2
* and PCLK1 prescalers.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK/2 */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
#ifdef STM32F10X_CL
/* Configure PLLs ------------------------------------------------------*/
/* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
/* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
/* Enable PLL2 */
RCC->CR |= RCC_CR_PLL2ON;
/* Wait till PLL2 is ready */
while((RCC->CR & RCC_CR_PLL2RDY) == 0)
{
}
/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 |
RCC_CFGR_PLLMULL9);
#else
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL */
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
}
else
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
}
1、 RCC->CR |= ((uint32_t)RCC_CR_HSEON);//打开HSE
需要解释的是:自己配置寄存器时,不能直接配置寄存器的某一位为0或者为1,因为大多寄存器的访问只允许:字, 半字 和字节访问。(但是寄存器的每一位,官方都已经定义好名字),所以可以采用上面的方式去定义
2、//等待外部时钟稳定。如果RCC_CR_HSERDY位为1,说明外部时钟已经就绪
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));如果外部时钟已经就绪或者超时未就绪
#define HSE_STARTUP_TIMEOUT ((uint16_t)0x0500) //超时时间
3、都会退出do...while...进入下面判断
如果外部时钟就绪:
if ((RCC->CR & RCC_CR_HSERDY) != RESET)//RCC_CR_HSERDY位≠0
HSEStatus = (uint32_t)0x01;//标志位置1
否则
HSEStatus = (uint32_t)0x00;//标志位清0
[ __IO uint32_t StartUpCounter = 0, HSEStatus = 0;//为函数中自己定义的两个标志位]
--------------------------------------------------------------------------------------------------------------------
4A、if (HSEStatus == (uint32_t)0x01)// 如果外部时钟就绪,标志位置1
/-----------------配置flash----------------------------------/
FLASH->ACR |= FLASH_ACR_PRFTBE;
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;参考《STM32F10xxx闪存编程参考手册.pdf》
/------------------配置HCLK/PCLK2/PCLK1-----------------/
/* HCLK = SYSCLK ,HCLK=系统时钟,意味着AHB预分频系数要设置为1*/
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK ,PCLK2=HCLK,意味着APB2预分频系数要设置为1*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK /2,PCLK1=HCLK的一半(官方注释错误),意味着APB2预分频要➗2*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;/-------配置锁相环(分频器)-PLLSRC=HSE,PLLMULL=9-------/
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);/*---------------Enable PLL-------------------------------- */
RCC->CR |= RCC_CR_PLLON;//前面的位配置完之后,再打开锁相环
/---------------------等待PLL准备就绪-----------------------------/
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0);/----------------------选择锁相环作为系统时钟输入CFGR的SW位=0x10------------/
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;/-------------------------------等待系统时钟就绪---------------------------------------/
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08);#如果走到这里:此时,使用外部晶振HSE(8MHz),HSE作为PLL锁相环的输入,锁相环9倍频输出,SYSCLK=72MHz,AHB=1分频,则HCLK=SYSLCK=72MHZ,APB1低速外设总线预分频器2分频则PCLK1=36MHz,APB2高速外设总线预分频器1分频则PCLK2=72MHZ。
/---------------------------------正常流程结束-----------------------------------------------------------/
4B、else//外部晶振无效,硬件默认配置使用HSI
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}/---------------------------------异常流程结束,使用内部RC-HSI-------------------------------------/
也就是说,无论如何,创建完工程之后,写个空的main函数,单片机就已经可以工作了。
标签:SYSCLK,SystemInit,HSE,CFGR,配置,CR,RCC,uint32,时钟 来源: https://blog.csdn.net/qq_42212668/article/details/122013768