Spark GraphX 应用示例
作者:互联网
构建用户合作关系属性图
顶点属性
用户名
职业
边属性
合作关系
import org.apache.spark.graphx.{Edge, Graph}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
object GraphDemo2 {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("sparkGraph")
.master("local[*]").getOrCreate()
val sc = spark.sparkContext
//没注释的是通过内存创建rdd
//还有一种是读取本地文件
//val graph2: Graph[Int, Int] = GraphLoader.edgeListFile(sc,"in/graph.txt")
val users: RDD[(Long, (String, String))] = sc.makeRDD(
Array(
(3L, ("rxin", "student")),
(7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "professor")),
(2L, ("istocia", "professor"))
)
)
//创建边集合
val relations: RDD[Edge[String]] = sc.makeRDD(
Array(
Edge(3L, 7L, "Collaborator"),
Edge(5L, 3L, "Advisor"),
Edge(2L, 5L, "Colleague"),
Edge(5L, 7L, "PI")
))
//将得到的顶点rdd和边rdd放入到Graph中
val graph: Graph[(String, String), String] = Graph(users,relations)
// graph.triplets.foreach(println)//打印最完整的关系
// graph.vertices.foreach(println)//打印顶点集合
graph.edges.foreach(println)//打印边集合
}
}
标签:String,val,示例,Graph,Edge,graph,spark,Spark,GraphX 来源: https://blog.csdn.net/m0_46620354/article/details/121982392