DataWhale-(scikit-learn教程)-Task01(线性回归与逻辑回归)-202112
作者:互联网
DataWhale-(scikit-learn教程)-Task01(线性回归与逻辑回归)-202112
DataWhale的scikit-learn教程链接
一、 线性回归
1. 线性回归的基本形式
2. 梯度下降法训练
假设给定模型
h
(
θ
)
=
∑
j
=
0
n
θ
j
x
j
h(\theta)=\sum_{j=0}^{n} \theta_{j} x_{j}
h(θ)=∑j=0nθjxj以及目标函数(损失函数):
J
(
θ
)
=
1
m
∑
i
=
0
m
(
h
θ
(
x
i
)
−
y
i
)
2
J(\theta)=\frac{1}{m} \sum_{i=0}^{m}\left(h_{\theta}\left(x^{i}\right)-y^{i}\right)^{2}
J(θ)=m1∑i=0m(hθ(xi)−yi)2, 其中
m
m
m表示数据的量,我们目标是为了
J
(
θ
)
J(\theta)
J(θ)尽可能小,所以这里加上
1
2
\frac{1}{2}
21为了后面的简化,即
J
(
θ
)
=
1
2
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
2
J(\theta)=\frac{1}{2m} \sum_{i=0}^{m}\left(y^{i}-h_{\theta}\left(x^{i}\right)\right)^{2}
J(θ)=2m1∑i=0m(yi−hθ(xi))2。
那么梯度则为:
∂
J
(
θ
)
∂
θ
j
=
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
∂
∂
θ
j
(
y
i
−
h
θ
(
x
i
)
)
=
−
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
∂
∂
θ
j
(
∑
j
=
0
n
θ
j
x
j
i
−
y
i
)
=
−
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
x
j
i
=
1
m
∑
i
=
0
m
(
h
θ
(
x
i
)
−
y
i
)
)
x
j
i
\begin{aligned} \frac{\partial J(\theta)}{\partial \theta_{j}} &=\frac{1}{m} \sum_{i=0}^{m}\left(y^{i}-h_{\theta}\left(x^{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(y^{i}-h_{\theta}\left(x^{i}\right)\right) \\ &=-\frac{1}{m} \sum_{i=0}^{m}\left(y^{i}-h_{\theta}\left(x^{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(\sum_{j=0}^{n} \theta_{j} x_{j}^{i}-y^{i}\right) \\ &=-\frac{1}{m} \sum_{i=0}^{m}\left(y^{i}-h_{\theta}\left(x^{i}\right)\right) x_{j}^{i}\\ &=\frac{1}{m} \sum_{i=0}^{m}\left(h_{\theta}(x^{i})-y^{i})\right) x_{j}^{i} \end{aligned}
∂θj∂J(θ)=m1i=0∑m(yi−hθ(xi))∂θj∂(yi−hθ(xi))=−m1i=0∑m(yi−hθ(xi))∂θj∂(j=0∑nθjxji−yi)=−m1i=0∑m(yi−hθ(xi))xji=m1i=0∑m(hθ(xi)−yi))xji
设
x
x
x是(m,n)维的矩阵,
y
y
y是(m,1)维度的矩阵,
h
θ
h_{\theta}
hθ是预测的值,维度与
y
y
y相同,那么梯度用矩阵表示如下:
∂
J
(
θ
)
∂
θ
j
=
1
m
x
T
(
h
θ
−
y
)
\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{1}{m}x^{T}(h_{\theta}-y)
∂θj∂J(θ)=m1xT(hθ−y)
3. 一元线性回归代码实现
(1) numpy使用梯度下降实现
import numpy as np
import matplotlib.pyplot as plt
def true_fun(X):
return 1.5*X + 0.2
np.random.seed(0) # 随机种子
n_samples = 30
'''生成随机数据作为训练集'''
X_train = np.sort(np.random.rand(n_samples))
y_train = (true_fun(X_train) + np.random.randn(n_samples) * 0.05).reshape(n_samples,1)
data_X = []
for x in X_train:
data_X.append([1,x])
data_X = np.array((data_X))
m,p = np.shape(data_X) # m, 数据量 p: 特征数
max_iter = 1000 # 迭代数
weights = np.ones((p,1))
alpha = 0.1 # 学习率
for i in range(0,max_iter):
error = np.dot(data_X,weights)- y_train
gradient = data_X.transpose().dot(error)/m
weights = weights - alpha * gradient
print("输出参数w:",weights[1:][0]) # 输出模型参数w
print("输出参数:b",weights[0]) # 输出参数b
X_test = np.linspace(0, 1, 100)
plt.plot(X_test, X_test*weights[1][0]+weights[0][0], label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X_train,y_train) # 画出训练集的点
plt.legend(loc="best")
plt.show()
(2) sklearn实现一元线性回归
import numpy as np
from sklearn.linear_model import LinearRegression # 导入线性回归模型
import matplotlib.pyplot as plt
def true_fun(X):
return 1.5*X + 0.2
np.random.seed(0) # 随机种子
n_samples = 30
'''生成随机数据作为训练集'''
X_train = np.sort(np.random.rand(n_samples))
y_train = (true_fun(X_train) + np.random.randn(n_samples) * 0.05).reshape(n_samples,1)
model = LinearRegression() # 定义模型
model.fit(X_train[:,np.newaxis], y_train) # 训练模型
print("输出参数w:",model.coef_) # 输出模型参数w
print("输出参数:b",model.intercept_) # 输出参数b
X_test = np.linspace(0, 1, 100)
plt.plot(X_test, model.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X_train,y_train) # 画出训练集的点
plt.legend(loc="best")
plt.show()
(3) sklearn实现多元线性回归
from sklearn.linear_model import LinearRegression
X_train = [[1,1,1],[1,1,2],[1,2,1]]
y_train = [[6],[9],[8]]
model = LinearRegression()
model.fit(X_train, y_train)
print("输出参数w:",model.coef_) # 输出参数w1,w2,w3
print("输出参数b:",model.intercept_) # 输出参数b
test_X = [[1,3,5]]
pred_y = model.predict(test_X)
print("预测结果:",pred_y)
二、多项式回归以及过拟合与欠拟合
- 训练集
用来训练模型内参数的数据集 - 验证集
用于在训练过程中检验模型的状态,收敛情况,通常用于调整超参数,根据几组模型验证集上的表现决定哪组超参数拥有最好的性能。同时验证集在训练过程中还可以用来监控模型是否发生过拟合,一般来说验证集表现稳定后,若继续训练,训练集表现还会继续上升,但是验证集会出现不升反降的情况,这样一般就发生了过拟合。所以验证集也用来判断何时停止训练。 - 测试集
测试集用来评价模型泛化能力,即使用训练集调整了参数,之前模型使用验证集确定了超参数,最后使用一个不同的数据集来检查模型。 - 交叉验证
交叉验证法的作用就是尝试利用不同的训练集/测试集划分来对模型做多组不同的训练/测试,来应对测试结果过于片面以及训练数据不足的问题。
- 多项式回归的sklearn实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
def true_fun(X):
return np.cos(1.5 * np.pi * X)
np.random.seed(0)
n_samples = 30
degrees = [1, 4, 15] # 多项式最高次
X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1
plt.figure(figsize=(14, 5))
for i in range(len(degrees)):
ax = plt.subplot(1, len(degrees), i + 1)
plt.setp(ax, xticks=(), yticks=())
polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)
linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),
("linear_regression", linear_regression)]) # 使用pipline串联模型
pipeline.fit(X[:, np.newaxis], y)
# 使用交叉验证
scores = cross_val_score(pipeline, X[:, np.newaxis], y,
scoring="neg_mean_squared_error", cv=10)
X_test = np.linspace(0, 1, 100)
plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
plt.xlabel("x")
plt.ylabel("y")
plt.xlim((0, 1))
plt.ylim((-2, 2))
plt.legend(loc="best")
plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(
degrees[i], -scores.mean(), scores.std()))
plt.show()
二、逻辑回归
同线性回归一样,需要求出 n n n个参数:
z = θ 0 + θ 1 x + θ 2 x + . . . + θ n x = θ T x z=\theta_0+\theta_1x+\theta_2x+...+\theta_nx=\theta^Tx z=θ0+θ1x+θ2x+...+θnx=θTx
逻辑回归通过Sigmoid函数引入了非线性因素,可以轻松处理二分类问题:
h θ ( x ) = g ( θ T x ) , g ( z ) = 1 1 + e − z h_{\theta}(x)=g\left(\theta^{T} x\right), g(z)=\frac{1}{1+e^{-z}} hθ(x)=g(θTx),g(z)=1+e−z1
与线性回归不同,逻辑回归使用的是交叉熵损失函数:
J ( θ ) = − 1 m [ ∑ i = 1 m ( y ( i ) log h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ( 1 − h θ ( x ( i ) ) ) ] J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m}\left(y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]\right. J(θ)=−m1[i=1∑m(y(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]
其梯度为:
∂ J ( θ ) ∂ θ j = 1 m ∑ i = 0 m ( h θ − y i ( x i ) ) x j i \frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=0}^{m}\left(h_{\theta}-y^{i}\left(x^{i}\right)\right) x_{j}^{i} ∂θj∂J(θ)=m1i=0∑m(hθ−yi(xi))xji
形式和线性回归一样,但其实假设函数(Hypothesis function)不一样,逻辑回归是:
h
θ
(
x
)
=
1
1
+
e
−
θ
T
x
h_{\theta}(x)=\frac{1}{1+e^{-\theta^{T} x}}
hθ(x)=1+e−θTx1
其推导如下:
∂ ∂ θ j J ( θ ) = ∂ ∂ θ j [ − 1 m ∑ i = 1 m [ y ( i ) log ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ( 1 − h θ ( x ( i ) ) ) ] ] = − 1 m ∑ i = 1 m [ y ( i ) 1 h θ ( x ( i ) ) ) ∂ ∂ θ j h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) 1 h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ] ∂ ∂ θ j h θ ( x ( i ) ) = − 1 m ∑ i = 1 m [ y ( i ) 1 h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ] ∂ ∂ θ j g ( θ T x ( i ) ) \begin{aligned} \frac{\partial}{\partial \theta_{j}} J(\theta) &=\frac{\partial}{\partial \theta_{j}}\left[-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \frac{1}{\left.h_{\theta}\left(x^{(i)}\right)\right)} \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)-\left(1-y^{(i)}\right) \frac{1}{1-h_{\theta}\left(x^{(i)}\right)} \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)\right] \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \frac{1}{\left.h_{\theta}\left(x^{(i)}\right)\right)}-\left(1-y^{(i)}\right) \frac{1}{1-h_{\theta}\left(x^{(i)}\right)}\right] \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right) \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \frac{1}{\left.h_{\theta}\left(x^{(i)}\right)\right)}-\left(1-y^{(i)}\right) \frac{1}{1-h_{\theta}\left(x^{(i)}\right)}\right] \frac{\partial}{\partial \theta_{j}} g\left(\theta^{T} x^{(i)}\right) \end{aligned} ∂θj∂J(θ)=∂θj∂[−m1i=1∑m[y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))]]=−m1i=1∑m[y(i)hθ(x(i)))1∂θj∂hθ(x(i))−(1−y(i))1−hθ(x(i))1∂θj∂hθ(x(i))]=−m1i=1∑m[y(i)hθ(x(i)))1−(1−y(i))1−hθ(x(i))1]∂θj∂hθ(x(i))=−m1i=1∑m[y(i)hθ(x(i)))1−(1−y(i))1−hθ(x(i))1]∂θj∂g(θTx(i))
因为:
∂
∂
θ
j
g
(
θ
T
x
(
i
)
)
=
∂
∂
θ
j
1
1
+
e
−
θ
T
x
(
i
)
=
e
−
θ
T
x
(
i
)
(
1
+
−
θ
T
T
x
(
i
)
)
2
∂
∂
θ
j
θ
T
x
(
i
)
=
g
(
θ
T
x
(
i
)
)
(
1
−
g
(
θ
T
x
(
i
)
)
)
x
j
(
i
)
\begin{aligned} \frac{\partial}{\partial \theta_{j}} g\left(\theta^{T} x^{(i)}\right) &=\frac{\partial}{\partial \theta_{j}} \frac{1}{1+e^{-\theta^{T} x^{(i)}}} \\ &=\frac{e^{-\theta^{T} x^{(i)}}}{\left(1+^{-\theta} T^{T_{x}(i)}\right)^{2}} \frac{\partial}{\partial \theta_{j}} \theta^{T} x^{(i)} \\ &=g\left(\theta^{T} x^{(i)}\right)\left(1-g\left(\theta^{T} x^{(i)}\right)\right) x_{j}^{(i)} \end{aligned}
∂θj∂g(θTx(i))=∂θj∂1+e−θTx(i)1=(1+−θTTx(i))2e−θTx(i)∂θj∂θTx(i)=g(θTx(i))(1−g(θTx(i)))xj(i)
所以:
∂
∂
θ
j
J
(
θ
)
=
−
1
m
∑
i
=
1
m
[
y
(
i
)
(
1
−
g
(
θ
T
x
(
i
)
)
)
−
(
1
−
y
(
i
)
)
g
(
θ
T
x
(
i
)
)
]
x
j
(
i
)
=
−
1
m
∑
i
=
1
m
(
y
(
i
)
−
g
(
θ
T
x
(
i
)
)
)
x
j
(
i
)
=
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
x
j
(
i
)
\begin{aligned} \frac{\partial}{\partial \theta_{j}} J(\theta) &=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)}\left(1-g\left(\theta^{T} x^{(i)}\right)\right)-\left(1-y^{(i)}\right) g\left(\theta^{T} x^{(i)}\right)\right] x_{j}^{(i)} \\ &=-\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-g\left(\theta^{T} x^{(i)}\right)\right) x_{j}^{(i)} \\ &=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} \end{aligned}
∂θj∂J(θ)=−m1i=1∑m[y(i)(1−g(θTx(i)))−(1−y(i))g(θTx(i))]xj(i)=−m1i=1∑m(y(i)−g(θTx(i)))xj(i)=m1i=1∑m(hθ(x(i))−y(i))xj(i)
1. 逻辑回归用numpy实现
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
from Mnist.load_data import load_local_mnist
import numpy as np
import time
class LogisticRegression:
def __init__(self, x_train, y_train, x_test, y_test):
'''
Args:
x_train [Array]: 训练集数据
y_train [Array]: 训练集标签
x_test [Array]: 测试集数据
y_test [Array]: 测试集标签
'''
self.x_train, self.y_train = x_train, y_train
self.x_test, self.y_test = x_test, y_test
# 将输入数据转为矩阵形式,方便运算
self.x_train_mat, self.x_test_mat = np.mat(
self.x_train), np.mat(self.x_test)
self.y_train_mat, self.y_test_mat = np.mat(
self.y_test).T, np.mat(self.y_test).T
# theta表示模型的参数,即w和b
self.theta = np.mat(np.zeros(len(x_train[0])))
self.lr=0.001 # 可以设置学习率优化,使用Adam等optimizier
self.n_iters=10 # 设置迭代次数
@staticmethod
def sigmoid(x):
'''sigmoid函数
'''
return 1.0/(1+np.exp(-x))
def _predict(self,x_test_mat):
P=self.sigmoid(np.dot(x_test_mat, self.theta.T))
if P >= 0.5:
return 1
return 0
def train(self):
'''训练过程,可参考伪代码
'''
for i_iter in range(self.n_iters):
for i in range(len(self.x_train)):
result = self.sigmoid(np.dot(self.x_train_mat[i], self.theta.T))
error = self.y_train[i]- result
grad = error*self.x_train_mat[i]
self.theta+= self.lr*grad
print('LogisticRegression Model(learning_rate={},i_iter={})'.format(
self.lr, i_iter+1))
def save(self):
'''保存模型参数到本地文件
'''
np.save(os.path.dirname(sys.argv[0])+"/theta.npy",self.theta)
def load(self):
self.theta=np.load(os.path.dirname(sys.argv[0])+"/theta.npy")
def test(self):
# 错误值计数
error_count = 0
#对于测试集中每一个测试样本进行验证
for n in range(len(self.x_test)):
y_predict=self._predict(self.x_test_mat[n])
#如果标记与预测不一致,错误值加1
if self.y_test[n] != y_predict:
error_count += 1
print("accuracy=",1 - (error_count /(n+1)))
#返回准确率
return 1 - error_count / len(self.x_test)
def normalized_dataset():
# 加载数据集,one_hot=False意思是输出标签为数字形式,比如3而不是[0,0,0,1,0,0,0,0,0,0]
(x_train, y_train), (x_test, y_test) = load_local_mnist(one_hot=False)
# 将w和b结合在一起,因此训练数据增加一维
ones_col=[[1] for i in range(len(x_train))] # 生成全为1的二维嵌套列表,即[[1],[1],...,[1]]
x_train_modified=np.append(x_train,ones_col,axis=1)
ones_col=[[1] for i in range(len(x_test))] # 生成全为1的二维嵌套列表,即[[1],[1],...,[1]]
x_test_modified=np.append(x_test,ones_col,axis=1)
# Mnsit有0-9是个标记,由于是二分类任务,所以将标记0的作为1,其余为0
# 验证过<5为1 >5为0时正确率在90%左右,猜测是因为数多了以后,可能不同数的特征较乱,不能有效地计算出一个合理的超平面
# 查看了一下之前感知机的结果,以5为分界时正确率81,重新修改为0和其余数时正确率98.91%
# 看来如果样本标签比较杂的话,对于是否能有效地划分超平面确实存在很大影响
y_train_modified=np.array([1 if y_train[i]==1 else 0 for i in range(len(y_train))])
y_test_modified=np.array([1 if y_test[i]==1 else 0 for i in range(len(y_test))])
return x_train_modified,y_train_modified,x_test_modified,y_test_modified
if __name__ == "__main__":
start = time.time()
x_train_modified,y_train_modified,x_test_modified,y_test_modified = normalized_dataset()
model=LogisticRegression(x_train_modified,y_train_modified,x_test_modified,y_test_modified)
model.train()
model.save()
model.load()
accur=model.test()
end = time.time()
print("total acc:",accur)
print('time span:', end - start)
2. 逻辑回归用sklearn实现
import sys
from pathlib import Path
curr_path = str(Path().absolute())
parent_path = str(Path().absolute().parent)
sys.path.append(parent_path) # add current terminal path to sys.path
from Mnist.load_data import load_local_mnist
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
(X_train, y_train), (X_test, y_test) = load_local_mnist(normalize = False,one_hot = False)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred)) # 打印报告
import sys
from pathlib import Path
curr_path = str(Path().absolute())
parent_path = str(Path().absolute().parent)
sys.path.append(parent_path) # add current terminal path to sys.path
from Mnist.load_data import load_local_mnist
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
(X_train, y_train), (X_test, y_test) = load_local_mnist(normalize = False,one_hot = False)
X_train, y_train= X_train[:2000], y_train[:2000]
X_test, y_test = X_test[:200],y_test[:200]
# solver:即使用的优化器,lbfgs:拟牛顿法, sag:随机梯度下降
model = LogisticRegression(solver='lbfgs', max_iter=500) # lbfgs:拟牛顿法
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred)) # 打印报告
标签:right,回归,scikit,DataWhale,np,train,test,theta,left 来源: https://blog.csdn.net/sinat_36892485/article/details/121958535