for和panda 的连用
作者:互联网
```python
import pandas as pd
import numpy as np
df = pd.read_excel('D://test/ppp.xlsx',sheet_name="Phylum")
# print(df)
# df1=df.groupby(by='Phylum')
#
# df
# df1.to_excel("D://test//PP_Des.xlsx")
# df['X.mean'] = df['SUM'].mean()
#df.groupby(by='Phylum').describe()
#
# df1 = df.query('Phylum=="p__Firmicutes"')
#
# df1['xi-x'] =np.power(df1['SUM'] - df['X.mean'],2)
# std = np.power(df1['xi-x'].sum()/df['Phylum'].count(),0.5)
# print(std)
# df['S'] = np.power(df['SUM']-df['SUM'].mean(),2)
#
# df['x'] = np.power(df["S"],0.5)/df['Phylum'].count()-1
# print(df['Phylum'].count())
#
#
#
# print(df)
# df1 = df.groupby(by='Phylum').describe()
# df1 = df.groupby(by='Family').describe()
# df1 = df.describe()
df2 = df.groupby (by='Phylum').sum ( )
df2.index
# print(df2.index)
# # print(df2.index)
name = df2.index
# # print(name)
# # print(name)
list1=[]
# print(df['Phylum'])
my = {}
x=pd.DataFrame()
for i in name:
# print(i)
df1 = df.query('Phylum=="%s"'%str(i))
count = df1["Phylum"].count()
print(df1)
df1['per'] = df1['SUM'] / df1['SUM'].sum ( )
df1['X.mean'] = df1['per'].mean()
df1['(xi-x)^2'] =np.power(df1['per'] - df1['X.mean'],2)
H = df1['(xi-x)^2'].sum()
x[i] = H
df1 = np.power(H/(df1['Phylum'].count()-1),0.5)
# count = df1['Phylum'].count( )
xh = pd.DataFrame({'Phylum': i, 'std': H, 'count': count},index=[0])
list1.append(xh)
df4=pd.concat(list1)
df4.to_excel('D://test/xh1.xlsx')
print(xh)
# # df3 = pd.DataFrame.from_dict(my)
# # df3 = pd.DataFrame(my)
#
# # df3 = pd.DataFrame.from_dict(my,orient = 'index')
# print(df4)
# print(list1)
# df3.to_excel ('D://test/xh1.xlsx')
#
# #
# print(df4)
# df3 = df1.groupby (by='Phylum').describe ( )
# list1.append(df3)
# df4=pd.concat(list1)
# df4["all.sum"] = df2['SUM'].sum()
# #
# df4.to_excel ('D://test/xh1.xlsx')
# print(df4)
# # df4= pd.DataFrame(list1)
# # print(df4)
# # df1 = df.query('Phylum=="p__Firmicutes"')
# #
# # df1['per'] = df1['SUM'] /df1['SUM'].sum()
# #
# #
# # df2 = df1.groupby(by='Phylum').describe()
# #
# #
# #
# # # df2 = df.groupby(by='Phylum').describe()
# #
# # # df1['perc'] = df1['SUM']/df1['SUM'].sum()
# # #
# df2.to_excel('D://test/xh2.xlsx')
# df1.to_excel('D://test/xxh.xlsx')
标签:df,SUM,df1,连用,Phylum,pd,print,panda 来源: https://blog.csdn.net/qq_45862222/article/details/121950811