Min-max 容斥与 kth 容斥
作者:互联网
期望的线性性:
\[E(x+y)=E(x)+E(y) \]证明:
\[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \]\[=\sum_i\sum_ji*P(i=x,j=y)+\sum_i\sum_jj*P(i=x,j=y) \]\[=\sum_ii*P(i=x)+\sum_jj*P(j=y) \]\[=E(x)+E(y) \]Min - Max 容斥:
我们现在有一个全集 \(U= \lbrace{a_1,a_2,a_3,...,a_n}\rbrace\)
我们设:
\[\begin{cases} {\max(S)=\max\limits_{a_i∈S}a_i}\\ {\min(S)=\min\limits_{a_i∈S}a_i}\\ \end{cases} \]有:
\[\begin{cases} \max(S)=\sum_{T \in S}\limits(-1)^{|T|-1}\min(T)\\ \min(S)=\sum_{T \in S}\limits(-1)^{|T|-1}\max(T)\\ \end{cases} \]二项式反演证明:
我们想构造一个函数 \(f\) ,使得:
\[\max(S)=\sum_{T \in S}\limits f(T)\min(T) \]然后依然考虑一个元素排序后在哪些集合产生贡献
假设某个元素从小到大后排在第 \(x\) 位(集
合大小为 \(n\)),那么它的贡献就是:
变换一下:
\[[n-x = 0]=\sum_{i=0}^{n-x}\left(\begin{array}{c}n-x\\ i\end{array}\right)f(i+1) \]\[[x = 0]=\sum_{i=0}^{x}\left(\begin{array}{c}x\\ i\end{array}\right)f(i+1) \]二项式反演:
\[f(n+1)=\sum_{i=0}^n(-1)^{n-i}\left(\begin{array}{c}n\\ i\end{array}\right)[i=0] \]\[f(n+1)=(-1)^{n}\left(\begin{array}{c}n\\ 0\end{array}\right)=(-1)^n \]\[f(n)=(-1)^{n-1} \]于是:
\[\max(S)=\sum_{T \in S}\limits(-1)^{|T|-1}\min(T) \]证毕
kth 容斥:
\[Kthmax(S)=\sum_{T⊆S}(-1)^{|T|-k}\left(\begin{array}{c}{|T|-1}\\ {k-1}\end{array}\right)min(T) \]证明:
设:
\[Kthmax(S)=\sum_{T⊆S}f(T)min(T) \]假设某个元素从小到大后排在第 \(x\) 位(集
合大小为 \(n\)),有:
变换一下:
\[[n-x=k-1 ]=\sum_{i=0}^{n-x}\left(\begin{array}{c}n-x\\ i\end{array}\right)f(i+1) \]\[[x = k-1]=\sum_{i=0}^{x}\left(\begin{array}{c}x\\ i\end{array}\right)f(i+1) \]二项式反演:
\[f(n+1)=\sum_{i=0}^{n}(-1)^{n-i}\left(\begin{array}{c}n\\ i\end{array}\right)[i=k-1] \]\[f(n+1)=(-1)^{n-k+1}\left(\begin{array}{c}n\\ k-1\end{array}\right) \]\[f(n)=(-1)^{n-k}\left(\begin{array}{c}n-1\\ k-1\end{array}\right) \]于是:
\[Kthmax(S)=\sum_{T⊆S}(-1)^{|T|-k}\left(\begin{array}{c}|T|-1\\ k-1\end{array}\right)min(T) \]证毕
Min-Max容斥定理在期望下也成立:
\[\begin{cases} E(\max(S))=\sum_{T \in S}\limits(-1)^{|T|-1}E(\min(T))\ \ (1)\\ \\ E(\min(S))=\sum_{T \in S}\limits(-1)^{|T|-1}E(\max(T))\ \ (2)\\ \\ E(Kthmax(S))=\sum_{T⊆S}(-1)^{|T|-k}\left(\begin{array}{c}|T|-1\\ k-1\end{array}\right)E(min(T))\ \ (3)\\ \end{cases} \]以 \((1)\) 为例:
\[E(\max(S))=\sum_{T \in S}\limits(-1)^{|T|-1}E(\min(T)) \]证明:
由于:
\[\max(S)=\sum_{T \in S}\limits(-1)^{|T|-1}\min(T) \]有:
\[E(\max(S))=E(\sum_{T \in S}\limits(-1)^{|T|-1}\min(T)) \]由期望的线性性,直接整理,得:
\[E(\max(S))=\sum_{T \in S}\limits(-1)^{|T|-1}E(\min(T)) \]证毕
[HAOI2015]按位或
#include<bits/stdc++.h>
using namespace std;
int n;
int cnt[1<<20];
double p[1<<20],ans;
int main(){
scanf("%d",&n);
for(int s=0;s<(1<<n);s++){
scanf("%lf",&p[s]);
cnt[s]=cnt[s>>1]+(s&1);
}
for(int i=1;i<(1<<n);i<<=1){
for(int s1=0;s1<(1<<n);s1+=(i<<1)){
for(int s2=0;s2<i;s2++){
p[i+s1+s2]+=p[s1+s2];
}
}
}
for(int i=1;i<(1<<n);i++)if(1-p[i^((1<<n)-1)])ans+=((cnt[i]&1)?1:-1)/(1-p[i^((1<<n)-1)]);
if(ans<1e-10)puts("INF");
else printf("%.10lf",ans);
return 0;
}
重返现世
#include<bits/stdc++.h>
using namespace std;
int n,m,t;
long long dp[15][10005];
const long long md=998244353;
inline long long pwr(long long x,long long y){
long long res=1;
while(y){
if(y&1)res=res*x%md;
x=x*x%md;y>>=1;
}return res;
}
int main(){
scanf("%d%d%d",&n,&t,&m);
t=n-t+1;dp[0][0]=1;
for(int i=1;i<=n;i++){
int p;scanf("%d",&p);
for(int k=m;k>=p;k--){
for(int j=t;j;j--){
dp[j][k]=(dp[j][k]+dp[j-1][k-p]-dp[j][k-p])%md;
}
}
}
long long ans=dp[t][0];
for(int i=1;i<=m;i++)ans=(ans+dp[t][i]*pwr(i,md-2)%md)%md;
printf("%lld",(ans+md)*m%md);
return 0;
}
[PKUWC2018]随机游走
#include<bits/stdc++.h>
using namespace std;
int n,q,rt;
int ver[45],ne[45],head[45],tot,deg[45];
inline void link(int x,int y){
ver[++tot]=y;
ne[tot]=head[x];
head[x]=tot;deg[y]++;
}
long long a[21],b[21];
const long long md=998244353;
inline long long pwr(long long x,long long y){
long long res=1;
while(y){
if(y&1)res=res*x%md;
x=x*x%md;y>>=1;
}return res;
}
void dfs(int x,int fi,int S){
if((S>>(x-1))&1)return ;
long long tota=0,totb=0;
for(int i=head[x];i;i=ne[i]){
int u=ver[i];
if(u==fi)continue;
dfs(u,x,S);
tota=(tota+a[u])%md;totb=(totb+b[u])%md;
}
a[x]=pwr(deg[x]-tota,md-2);
b[x]=(deg[x]+totb)%md*a[x]%md;
}
long long dp[1<<18];
int cnt[1<<18];
int main(){
scanf("%d%d%d",&n,&q,&rt);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
link(x,y);link(y,x);
}//puts("111");
for(int s=1;s<(1<<n);s++){
cnt[s]=cnt[s>>1]+(s&1);
for(int i=1;i<=n;i++)a[i]=b[i]=0;
dfs(rt,rt,s);dp[s]=(cnt[s]&1?1:-1)*b[rt];
}//puts("222");
for(int i=0;i<n;i++){
for(int s=0;s<(1<<n);s++){
if((s>>i)&1)continue;
dp[s|(1<<i)]=(dp[s|(1<<i)]+dp[s])%md;
}
}
while(q--){
int k,s=0;
scanf("%d",&k);
while(k--){
int x;scanf("%d",&x);
s|=(1<<(x-1));
}printf("%lld\n",(dp[s]+md)%md);
}
return 0;
}
标签:begin,end,int,max,sum,容斥,long,kth,array 来源: https://www.cnblogs.com/A-Quark/p/15686124.html