其他分享
首页 > 其他分享> > Nand2Tetris 01 - Boolean Logic

Nand2Tetris 01 - Boolean Logic

作者:互联网

背景知识

布尔代数

门逻辑

硬件描述语言 HDL


项目

Elementary Logic Gates 16-bit Variants Multi-way Variants
Not Not16 Or8Way
And And16 Mux4Way16
Or Or16 Mux8Way16
Xor Mux16 DMux4Way
Mux DMux8Way
DMux

Nand

This gate is considered primitive and thus there is no need to implement it.

Basic Logic Gates

Not

The single-input Not gate, also known as "converter", converts its input from 0 to 1 and vice versa.

// File name: projects/01/Not.hdl

// Not gate:
// out = not in

CHIP Not {
    IN in;
    OUT out;

    PARTS:
    Nand(a=in, b=in, out=out);
}

And

The And function returns 1 when both its inputs are 1, and 0 otherwise.

// File name: projects/01/And.hdl

// And gate: 
// out = 1 if (a == 1 and b == 1)
//       0 otherwise

CHIP And {
    IN a, b;
    OUT out;

    PARTS:
    Nand(a=a, b=b, out=o);
    Not(in=o, out=out);
}

Or

The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

// File name: projects/01/Or.hdl

// Or gate:
// out = 1 if (a == 1 or b == 1)
//       0 otherwise

CHIP Or {
    IN a, b;
    OUT out;

    PARTS:
    Not(in=a, out=notA);
    Not(in=b, out=notB);
    And(a=notA, b=notB, out=o);
    Not(in=o, out=out);
}

Xor

The Xor function, also known as "exclusive or", returns 1 when its two inputs have opposing values, and 0 otherwise.

// File name: projects/01/Xor.hdl

// Exclusive-or gate:
// out = not (a == b)

CHIP Xor {
    IN a, b;
    OUT out;

    PARTS:
    Not(in=a, out=notA);
    Not(in=b, out=notB);
    And(a=a, b=notB, out=o1);
    And(a=notA, b=b, out=o2);
    Or(a=o1, b=o2, out=out);
}

Multiplexor

A multiplexor is a three-input gate that uses one of the inputs, called "selection bit", to select and output one of the other two inputs, called "data bits". Thus, a better name for this device might have been selector.

// File name: projects/01/Mux.hdl

// Multiplexor:
// out = a if sel == 0
//       b otherwise

CHIP Mux {
    IN a, b, sel;
    OUT out;

    PARTS:
    Not(in=sel, out=notSel);
    And(a=a, b=notSel, out=outA);
    And(a=b, b=sel, out=outB);
    Or(a=outA, b=outB, out=out);
}

Demultiplexor

A demultiplexor performs the opposite function of a multiplexor: It takes a single input and channels it to one of two possible outputs according to a selector bit that specifies which output to chose.

// File name: projects/01/DMux.hdl

// Demultiplexor:
// {a, b} = {in, 0} if sel == 0
//          {0, in} if sel == 1

CHIP DMux {
    IN in, sel;
    OUT a, b;

    PARTS:
    Not(in=sel, out=notSel);
    And(a=in, b=notSel, out=a);
    And(a=in, b=sel, out=b);
}

Multi-Bit Version of Basic Gates

Multi-Bit Not

An \(n\)-bit Not gate applies the boolean operation Not to every one of the bits in its \(n\)-bit input bus.

// File name: projects/01/Not16.hdl

// 16-bit Not:
// for i=0..15: out[i] = not in[i]

CHIP Not16 {
    IN in[16];
    OUT out[16];

    PARTS:
    Not(in=in[0], out=out[0]);
    Not(in=in[1], out=out[1]);
    Not(in=in[2], out=out[2]);
    Not(in=in[3], out=out[3]);
    Not(in=in[4], out=out[4]);
    Not(in=in[5], out=out[5]);
    Not(in=in[6], out=out[6]);
    Not(in=in[7], out=out[7]);
    Not(in=in[8], out=out[8]);
    Not(in=in[9], out=out[9]);
    Not(in=in[10], out=out[10]);
    Not(in=in[11], out=out[11]);
    Not(in=in[12], out=out[12]);
    Not(in=in[13], out=out[13]);
    Not(in=in[14], out=out[14]);
    Not(in=in[15], out=out[15]);
}

Multi-Bit And

An \(n\)-bit And gate applies the Boolean operation And to every one of the \(n\) bit-pairs arrayed in its two \(n\)-bit input buses.

// File name: projects/01/And16.hdl

// 16-bit bitwise And:
// for i = 0..15: out[i] = (a[i] and b[i])

CHIP And16 {
    IN a[16], b[16];
    OUT out[16];

    PARTS:
    And(a=a[0], b=b[0], out=out[0]);
    And(a=a[1], b=b[1], out=out[1]);
    And(a=a[2], b=b[2], out=out[2]);
    And(a=a[3], b=b[3], out=out[3]);
    And(a=a[4], b=b[4], out=out[4]);
    And(a=a[5], b=b[5], out=out[5]);
    And(a=a[6], b=b[6], out=out[6]);
    And(a=a[7], b=b[7], out=out[7]);
    And(a=a[8], b=b[8], out=out[8]);
    And(a=a[9], b=b[9], out=out[9]);
    And(a=a[10], b=b[10], out=out[10]);
    And(a=a[11], b=b[11], out=out[11]);
    And(a=a[12], b=b[12], out=out[12]);
    And(a=a[13], b=b[13], out=out[13]);
    And(a=a[14], b=b[14], out=out[14]);
    And(a=a[15], b=b[15], out=out[15]);
}

Multi-Bit Or

An \(n\)-bit Or gate applies the Boolean operation Or to every one of the \(n\) bit-pairs arrayed in its two \(n\)-bit input buses.

// File name: projects/01/Or16.hdl

// 16-bit bitwise Or:
// for i = 0..15 out[i] = (a[i] or b[i])

CHIP Or16 {
    IN a[16], b[16];
    OUT out[16];

    PARTS:
    Or(a=a[0], b=b[0], out=out[0]);
    Or(a=a[1], b=b[1], out=out[1]);
    Or(a=a[2], b=b[2], out=out[2]);
    Or(a=a[3], b=b[3], out=out[3]);
    Or(a=a[4], b=b[4], out=out[4]);
    Or(a=a[5], b=b[5], out=out[5]);
    Or(a=a[6], b=b[6], out=out[6]);
    Or(a=a[7], b=b[7], out=out[7]);
    Or(a=a[8], b=b[8], out=out[8]);
    Or(a=a[9], b=b[9], out=out[9]);
    Or(a=a[10], b=b[10], out=out[10]);
    Or(a=a[11], b=b[11], out=out[11]);
    Or(a=a[12], b=b[12], out=out[12]);
    Or(a=a[13], b=b[13], out=out[13]);
    Or(a=a[14], b=b[14], out=out[14]);
    Or(a=a[15], b=b[15], out=out[15]);
}

Multi-Bit Multiplexor

An \(n\)-bit multiplexor is exactly the same as the binary multiplexor, except that the two inputs are each \(n\)-bit wide; the selector is a single bit.

// File name: projects/01/Mux16.hdl

// 16-bit multiplexor: 
// for i = 0..15 out[i] = a[i] if sel == 0 
//                        b[i] if sel == 1

CHIP Mux16 {
    IN a[16], b[16], sel;
    OUT out[16];

    PARTS:
    Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
    Mux(a=a[1], b=b[1], sel=sel, out=out[1]);
    Mux(a=a[2], b=b[2], sel=sel, out=out[2]);
    Mux(a=a[3], b=b[3], sel=sel, out=out[3]);
    Mux(a=a[4], b=b[4], sel=sel, out=out[4]);
    Mux(a=a[5], b=b[5], sel=sel, out=out[5]);
    Mux(a=a[6], b=b[6], sel=sel, out=out[6]);
    Mux(a=a[7], b=b[7], sel=sel, out=out[7]);
    Mux(a=a[8], b=b[8], sel=sel, out=out[8]);
    Mux(a=a[9], b=b[9], sel=sel, out=out[9]);
    Mux(a=a[10], b=b[10], sel=sel, out=out[10]);
    Mux(a=a[11], b=b[11], sel=sel, out=out[11]);
    Mux(a=a[12], b=b[12], sel=sel, out=out[12]);
    Mux(a=a[13], b=b[13], sel=sel, out=out[13]);
    Mux(a=a[14], b=b[14], sel=sel, out=out[14]);
    Mux(a=a[15], b=b[15], sel=sel, out=out[15]);
}

Multi-Way Version of Basic Gates

Multi-Way Or

An \(n\)-way Or gate outputs 1 when at least one of its \(n\) bit inputs is 1, and 0 otherwise.

// File name: projects/01/Or8Way.hdl

// 8-way Or: 
// out = (in[0] or in[1] or ... or in[7])

CHIP Or8Way {
    IN in[8];
    OUT out;

    PARTS:
    Or(a=in[0], b=in[1], out=o1);
    Or(a=o1, b=in[2], out=o2);
    Or(a=o2, b=in[3], out=o3);
    Or(a=o3, b=in[4], out=o4);
    Or(a=o4, b=in[5], out=o5);
    Or(a=o5, b=in[6], out=o6);
    Or(a=o6, b=in[7], out=out);
}

Multi-Way/Multi-Bit Multiplexor

An \(m\)-way \(n\)-bit multiplexor selects one of \(m\) \(n\)- bit input buses and outputs it to a single \(n\)-bit output bus. The selection is specified by a set of \(k\) control bits, where \(k = log_2(m)\).

// File name: projects/01/Mux4Way16.hdl

// 4-way 16-bit multiplexor:
// out = a if sel == 00
//       b if sel == 01
//       c if sel == 10
//       d if sel == 11

CHIP Mux4Way16 {
    IN a[16], b[16], c[16], d[16], sel[2];
    OUT out[16];

    PARTS:
    Mux16(a=a, b=b, sel=sel[0], out=o1);
    Mux16(a=c, b=d, sel=sel[0], out=o2);
    Mux16(a=o1, b=o2, sel=sel[1], out=out);
}
// File name: projects/01/Mux8Way16.hdl

// 8-way 16-bit multiplexor:
// out = a if sel == 000
//       b if sel == 001
//       etc.
//       h if sel == 111

CHIP Mux8Way16 {
    IN a[16], b[16], c[16], d[16],
       e[16], f[16], g[16], h[16],
       sel[3];
    OUT out[16];

    PARTS:
    Mux4Way16(a=a, b=b, c=c, d=d, sel=sel[0..1], out=o1);
    Mux4Way16(a=e, b=f, c=g, d=h, sel=sel[0..1], out=o2);
    Mux16(a=o1, b=o2, sel=sel[2], out=out);
}

Multi-Way/Multi-Bit Demultiplexor

An \(m\)-way \(n\)-bit demultiplexor channels a single \(n\)-bit input into one of \(m\) possible \(n\)-bit outputs. The selection is specified by a set of \(k\) control bits, where \(k = log_2(m)\).

// File name: projects/01/DMux4Way.hdl

// 4-way demultiplexor:
// {a, b, c, d} = {in, 0, 0, 0} if sel == 00
//                {0, in, 0, 0} if sel == 01
//                {0, 0, in, 0} if sel == 10
//                {0, 0, 0, in} if sel == 11

CHIP DMux4Way {
    IN in, sel[2];
    OUT a, b, c, d;

    PARTS:
    DMux(in=in, sel=sel[1], a=o1, b=o2);
    DMux(in=o1, sel=sel[0], a=a, b=b);
    DMux(in=o2, sel=sel[0], a=c, b=d);
}
// File name: projects/01/DMux8Way.hdl

// 8-way demultiplexor:
// {a, b, c, d, e, f, g, h} = {in, 0, 0, 0, 0, 0, 0, 0} if sel == 000
//                            {0, in, 0, 0, 0, 0, 0, 0} if sel == 001
//                            etc.
//                            {0, 0, 0, 0, 0, 0, 0, in} if sel == 111

CHIP DMux8Way {
    IN in, sel[3];
    OUT a, b, c, d, e, f, g, h;

    PARTS:
    DMux(in=in, sel=sel[2], a=o1, b=o2);
    DMux4Way(in=o1, sel=sel[0..1], a=a, b=b, c=c, d=d);
    DMux4Way(in=o2, sel=sel[0..1], a=e, b=f, c=g, d=h);
}

标签:01,16,Mux,Logic,Nand2Tetris,bit,sel,out
来源: https://www.cnblogs.com/What-How-Why/p/15681489.html