其他分享
首页 > 其他分享> > 机器学习推荐系统记录

机器学习推荐系统记录

作者:互联网

记录机器学习的过程

git clone 问题

git config --global http.lowSpeedLimit 0
git config --global http.lowSpeedTime 999999
git config --global http.postBuffer 50024288000

2020年1月15日,为了准备西电的复试做一个机器学习的毕设,由于本科没有学过,零基础,所以在此记录一下,同时,本科做过的项目都忘了,也是为了培养良好的习惯。

机器学习管道

数据–》机器学习算法–》智能

学习目标

安装python,ipython notebook graphlab create
启动ipython notebook
在python中编写变量,函数和循环
在python中使用sframe执行基本数据操作

安装graphlab create 通过command line

最后一步要在anaconda prompt里面install graphlab create

python基本语法

notebook 中import graphlab

graphlab canvas

可视化
导入数据集之后,运用sf.show()进行数据可视化
canvas数据重定向,将可视化的数据重定向到ipython notebook中:
graphlab.canvas.set_target(‘ipynb’)

转换函数apply

某一列数据.apply(自定义函数)
sf[‘Country’].apply(transform_country)

推荐系统

在这里插入图片描述
在这里插入图片描述
非常流行的物品会淹没其他的影响,比如所有人都买了尿布,不代表我也需要,缺乏个性化,需要对过于流行的物品所在的矩阵进行正规化。在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

综合起来=特征+矩阵分解

在这里插入图片描述
在这里插入图片描述

推荐系统的性能度量:召回率、准确率

召回率=推荐的喜欢的物品/全部喜欢的物品
准确率=推荐的喜欢的物品/推荐的物品
召回率最大时准确率不理想
最优推荐:召回率=准确率=1
在这里插入图片描述
在这里插入图片描述

import graphlab
song_data = graphlab.SFrame('song_data.gl/')
song_data.head()
song_data['song'].show()
len(song_data)
users=song_data['user_id'].unique()
len(users)
train_data,test_data=song_data.random_split(.8,seed=0)
popularity_model=graphlab.popularity_recommender.create(train_data,user_id='user_id',item_id='song')
popularity_model.recommend(users=[users[0]])
personalized_model=graphlab.item_similarity_recommender.create(train_data,user_id='user_id',item_id='song')
personalized_model.recommend(users=[users[0]])
model_performance=graphlab.compare(test_data,[popularity_model,personalized_model],user_sample=0.05)
graphlab.show_comparison(model_performance,[popularity_model,personalized_model])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

网易云音乐UID

http://192.168.3.2:3000/v1/likelist?uid=645954254

返回数据得到音乐ID

{“ids”:[18638059,26217117],“checkPoint”:1582996860453,“code”:200}

获取网易云推荐的每日歌曲

先登录:
http://192.168.3.2:3000/v1/login/cellphone?phone=17772002134&password=614919799
再获取:
http://192.168.3.2:3000/v1/recommend/songs

获取歌曲详情有问题,可以获取相似歌曲

http://192.168.3.2:3000/v1/simi/song?id=26217117

歌曲详情的获取备用API:

https://api.imjad.cn/cloudmusic.md
https://api.imjad.cn/cloudmusic/?type=detail&id=26217117

音乐推荐系统搭建

推荐系统搭建1

数据的获取

# -*- coding:utf-8 -*-
"""
爬虫爬取网易云音乐歌单的数据包保存成json文件
python2.7环境
"""
import sys
reload(sys)
//解决字符乱码问题
sys.setdefaultencoding('utf-8')
import os
os.environ['NLS_LANG'] = 'Simplified Chinese_CHINA.ZHS16GBK'
import requests
import json
import os
import base64
import binascii
import urllib
import urllib2
from Crypto.Cipher import AES
from bs4 import BeautifulSoup


class NetEaseAPI:
    def __init__(self):
        self.header = {
            'Host': 'music.163.com',
            'Origin': 'https://music.163.com',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:56.0) Gecko/20100101 Firefox/56.0',
            'Accept': 'application/json, text/javascript',
            'Accept-Language': 'zh-CN,zh;q=0.9',
            'Connection': 'keep-alive',
            'Content-Type': 'application/x-www-form-urlencoded',
        }
        self.cookies = {'appver': '1.5.2'}
        self.playlist_class_dict = {}
        self.session = requests.Session()

    def _http_request(self, method, action, query=None, urlencoded=None, callback=None, timeout=None):
        connection = json.loads(self._raw_http_request(method, action, query, urlencoded, callback, timeout))
        return connection

    def _raw_http_request(self, method, action, query=None, urlencoded=None, callback=None, timeout=None):
        if method == 'GET':
            request = urllib2.Request(action, self.header)
            response = urllib2.urlopen(request)
            connection = response.read()
        elif method == 'POST':
            data = urllib.urlencode(query)
            request = urllib2.Request(action, data, self.header)
            response = urllib2.urlopen(request)
            connection = response.read()
        return connection

    @staticmethod
    def _aes_encrypt(text, secKey):
        pad = 16 - len(text) % 16
        text = text + chr(pad) * pad
        encryptor = AES.new(secKey, 2, '0102030405060708')
        ciphertext = encryptor.encrypt(text)
        ciphertext = base64.b64encode(ciphertext).decode('utf-8')
        return ciphertext

    @staticmethod
    def _rsa_encrypt(text, pubKey, modulus):
        text = text[::-1]
        rs = pow(int(binascii.hexlify(text), 16), int(pubKey, 16), int(modulus, 16))
        return format(rs, 'x').zfill(256)

    @staticmethod
    def _create_secret_key(size):
        return (''.join(map(lambda xx: (hex(ord(xx))[2:]), os.urandom(size))))[0:16]

    def get_playlist_id(self, action):
        request = urllib2.Request(action, headers=self.header)
        response = urllib2.urlopen(request)
        html = response.read().decode('utf-8')
        response.close()
        soup = BeautifulSoup(html, 'lxml')
        list_url = soup.select('ul#m-pl-container li div a.msk')
        for k, v in enumerate(list_url):
            list_url[k] = v['href'][13:]
        return list_url

    def get_playlist_detail(self, id):
        text = {
            'id': id,
            'limit': '100',
            'total': 'true'
        }
        text = json.dumps(text)
        nonce = '0CoJUm6Qyw8W8jud'
        pubKey = '010001'
        modulus = ('00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7'
                   'b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280'
                   '104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932'
                   '575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b'
                   '3ece0462db0a22b8e7')
        secKey = self._create_secret_key(16)
        encText = self._aes_encrypt(self._aes_encrypt(text, nonce), secKey)
        encSecKey = self._rsa_encrypt(secKey, pubKey, modulus)

        data = {
            'params': encText,
            'encSecKey': encSecKey
        }
        action = 'http://music.163.com/weapi/v3/playlist/detail'
        playlist_detail = self._http_request('POST', action, data)

        return playlist_detail


if __name__ == '__main__':
    nn = NetEaseAPI()

    index = 1
    for flag in range(1, 38):
        if flag > 1:
            page = (flag - 1) * 35
            url = 'http://music.163.com/discover/playlist/?order=hot&cat=%E5%85%A8%E9%83%A8&limit=35&offset=' + str(
                page)
        else:
            url = 'http://music.163.com/discover/playlist'
        playlist_id = nn.get_playlist_id(url)
        for item_id in playlist_id:
            playlist_detail = nn.get_playlist_detail(item_id)

            with open('data/{0}.json'.format(index), 'w') as file_obj:
                json.dump(playlist_detail, file_obj, ensure_ascii=False)
                index += 1
                print("写入json文件:", item_id)

特征工程和数据预处理,提取我这次做推荐系统有用的特征信息

# -*- coding:utf-8-*-
"""
对网易云所有歌单爬虫的json文件进行数据预处理成csv文件
python3.6环境
"""
import io
from __future__ import (absolute_import, division, print_function, unicode_literals)
import json


def parse_playlist_item():
    """
    :return: 解析成userid itemid rating timestamp行格式
    """
    file = io.open("neteasy_playlist_recommend_data.csv", 'a', encoding='utf8')
    for i in range(1, 1292):
        with io.open("{0}.json".format(i), 'r', encoding='UTF-8') as load_f:
            load_dict = json.load(load_f)
            try:
                for item in load_dict['playlist']['tracks']:
                    # playlist id # song id # score # datetime
                    line_result = [load_dict['playlist']['id'], item['id'], item['pop'], item['publishTime']]
                    for k, v in enumerate(line_result):
                        if k == len(line_result) - 1:
                            file.write(str(v))
                        else:
                            file.write(str(v) + ',')
                    file.write('\n')
            except Exception:
                print(i)
                continue
    file.close()


def parse_playlist_id_to_name():
    file = io.open("neteasy_playlist_id_to_name_data.csv", 'a', encoding='utf8')
    for i in range(1, 1292):
        with io.open("{0}.json".format(i), 'r', encoding='UTF-8') as load_f:
            load_dict = json.load(load_f)
            try:
                line_result = [load_dict['playlist']['id'], load_dict['playlist']['name']]
                for k, v in enumerate(line_result):
                    if k == len(line_result) - 1:
                        file.write(str(v))
                    else:
                        file.write(str(v) + ',')
                file.write('\n')
            except Exception:
                print(i)
                continue
    file.close()


def parse_song_id_to_name():
    file = io.open("neteasy_song_id_to_name_data.csv", 'a', encoding='utf8')
    for i in range(1, 1292):
        with io.open("{0}.json".format(i), 'r', encoding='UTF-8') as load_f:
            load_dict = json.load(load_f)
            try:
                for item in load_dict['playlist']['tracks']:
                    # playlist id # song id # score # datetime
                    line_result = [item['id'], item['name'] + '-' + item['ar'][0]['name']]
                    for k, v in enumerate(line_result):
                        if k == len(line_result) - 1:
                            file.write(str(v))
                        else:
                            file.write(str(v) + ',')
                    file.write('\n')
            except Exception:
                print(i)
                continue
    file.close()

parse_playlist_item()
parse_playlist_id_to_name()
parse_song_id_to_name()

Surprise推荐库(推荐歌单)

# -*- coding:utf-8-*-
"""
利用surprise推荐库 KNN协同过滤算法推荐网易云歌单
python2.7环境
"""
from __future__ import (absolute_import, division, print_function, unicode_literals)
import os
import csv
from surprise import KNNBaseline, Reader, KNNBasic, KNNWithMeans
from surprise import Dataset


def recommend_model():
    file_path = os.path.expanduser('neteasy_playlist_recommend_data.csv')
    # 指定文件格式
    reader = Reader(line_format='user item rating timestamp', sep=',')
    # 从文件读取数据
    music_data = Dataset.load_from_file(file_path, reader=reader)
    # 计算歌曲和歌曲之间的相似度

    train_set = music_data.build_full_trainset()
    print('开始使用协同过滤算法训练推荐模型...')
    algo = KNNBasic()
    algo.fit(train_set)
    return algo


def playlist_data_preprocessing():
    csv_reader = csv.reader(open('neteasy_playlist_id_to_name_data.csv'))
    id_name_dic = {}
    name_id_dic = {}
    for row in csv_reader:
        id_name_dic[row[0]] = row[1]
        name_id_dic[row[1]] = row[0]
    return id_name_dic, name_id_dic


def song_data_preprocessing():
    csv_reader = csv.reader(open('neteasy_song_id_to_name_data.csv'))
    id_name_dic = {}
    name_id_dic = {}
    for row in csv_reader:
        id_name_dic[row[0]] = row[1]
        name_id_dic[row[1]] = row[0]
    return id_name_dic, name_id_dic


def playlist_recommend_main():
    print("加载歌单id到歌单名的字典映射...")
    print("加载歌单名到歌单id的字典映射...")
    id_name_dic, name_id_dic = playlist_data_preprocessing()
    print("字典映射成功...")
    print('构建数据集...')
    algo = recommend_model()
    print('模型训练结束...')

    current_playlist_id = id_name_dic.keys()[102]//歌单id
    print('当前的歌单id:' + current_playlist_id)

    current_playlist_name = id_name_dic[current_playlist_id]
    print("当前的歌单名字:")
    print(current_playlist_name)

    playlist_inner_id = algo.trainset.to_inner_uid(current_playlist_id)
    print('当前的歌单内部id:' + str(playlist_inner_id))

    playlist_neighbors = algo.get_neighbors(playlist_inner_id, k=10)
    playlist_neighbors_id = (algo.trainset.to_raw_uid(inner_id) for inner_id in playlist_neighbors)
    # 把歌曲id转成歌曲名字
    playlist_neighbors_name = (id_name_dic[playlist_id] for playlist_id in playlist_neighbors_id)
    print("和歌单<", current_playlist_name, '> 最接近的10个歌单为:\n')
    for playlist_name in playlist_neighbors_name:
        print(playlist_name, name_id_dic[playlist_name])
playlist_recommend_main()

运行结果

加载歌单id到歌单名的字典映射...
加载歌单名到歌单id的字典映射...
字典映射成功...
构建数据集...
开始使用协同过滤算法训练推荐模型...
Computing the msd similarity matrix...
Done computing similarity matrix.
模型训练结束...
当前的歌单id:4879924824
当前的歌单名字:
【美剧】良医插曲BGM 第二季
当前的歌单内部id:812
和歌单< 【美剧】良医插曲BGM 第二季 > 最接近的10个歌单为:

良医BGM 3195822488
4869100193 4875075726
追逐繁星的孩子,梦里总有无尽星辰 4869100193
City pop ‖ 都市乐享主义 3133725493
【中世纪民谣】吟游诗人与时代挽歌 89963967
春日初告白 | 温暖男声,流进心底的阳光 3186322538
私人雷达|根据听歌记录为你打造 3136952023
起来 3079182188
[欧美私人订制] 最懂你的欧美推荐 每日更新35首 2829816518
「纯音」觅得一隅清净,花自尘埃出 3066614455

推荐系统搭建2

基于Word2Vec的网易云音乐歌曲推荐系统

# -*- coding:utf-8-*-
import os
import json
from random import shuffle
import multiprocessing
import gensim
import csv


def train_song2vec():
    """
    :return: 所有歌单song2Vec模型的训练和保存
    """
    songlist_sequence = []
    # 读取网易云音乐原数据
    for i in range(1, 1292):
        with open("{0}.json".format(i), 'r') as load_f:
            load_dict = json.load(load_f)
            parse_songlist_get_sequence(load_dict, songlist_sequence)

    # 多进程计算
    cores = multiprocessing.cpu_count()
    print('Using all {cores} cores'.format(cores=cores))
    print('Training word2vec model...')
    model = gensim.models.Word2Vec(sentences=songlist_sequence, size=150, min_count=3, window=7, workers=cores)
    print('Save model..')
    model.save('songVec.model')


def parse_songlist_get_sequence(load_dict, songlist_sequence):
    """
    解析每个歌单中的歌曲id信息
    :param load_dict: 包含一个歌单中所有歌曲的原始列表
    :param songlist_sequence: 一个歌单中所有给的id序列
    :return:
    """
    song_sequence = []
    for item in load_dict['playlist']['tracks']:
        try:
            song = [item['id'], item['name'], item['ar'][0]['name'], item['pop']]
            song_id, song_name, artist, pop = song
            song_sequence.append(str(song_id))
        except:
            print('song format error')

    for i in range(len(song_sequence)):
        shuffle(song_sequence)
        # 这里的list()必须加上,要不songlist中歌曲根本就不是随机打乱序列,而是都相同序列
        songlist_sequence.append(list(song_sequence))


def song_data_preprocessing():
    """
    歌曲id到歌曲名字的映射
    :return: 歌曲id到歌曲名字的映射字典,歌曲名字到歌曲id的映射字典
    """
    csv_reader = csv.reader(open('neteasy_song_id_to_name_data.csv'))
    id_name_dic = {}
    name_id_dic = {}
    for row in csv_reader:
        id_name_dic[row[0]] = row[1]
        name_id_dic[row[1]] = row[0]
    return id_name_dic, name_id_dic


train_song2vec()

model_str = 'songVec.model'
# 载入word2vec模型
model = gensim.models.Word2Vec.load(model_str)
id_name_dic, name_id_dic = song_data_preprocessing()

#song_id_list = list(id_name_dic.keys())[4000:5000:200]
song_id_list = id_name_dic.keys()[1000:1500:50]//数据的选取,间隔50
for song_id in song_id_list:
    result_song_list = model.most_similar(song_id)
    print(song_id)
    print(json.dumps(id_name_dic[song_id],encoding='UTF-8',ensure_ascii=False))
    print('\n相似歌曲和相似度分别为:')
    for song in result_song_list:
        print(json.dumps(id_name_dic[song[0]],encoding='UTF-8', ensure_ascii=False))
        print(song[1])
        #print('\t' + id_name_dic[song[0]].encode('utf-8'), song[1])
    print('\n')

运行结果

Using all 4 cores
Training word2vec model...
Save model..
420513125
"レイディ・ブルース-LUCKY TAPES"

相似歌曲和相似度分别为:
"关键词-林俊杰"
0.626468360424
"水星记-郭顶"
0.621081233025
"鱼仔(Cover:卢广仲)-是你的垚"
0.619691371918
"嚣张-en"
0.617167830467
"世间美好与你环环相扣-柏松"
0.615520179272
"嗜好-颜人中"
0.614804267883
"大眠 (完整版)-小乐哥"
0.613656818867
"全部都是你-DP龙猪"
0.612156033516
"蓝-石白其"
0.612105309963
"I Know You Know I Love You-落日飞车"
0.61181396246


1422705673
"Past Lives(Cover:BØRNS)-孙圳翰"

相似歌曲和相似度分别为:
"我还想她(Cover:林俊杰)-Uu"
0.590772628784
"所念皆星河-CMJ"
0.578336238861
"蓝-石白其"
0.576055586338
"零几年听的情歌-AY楊佬叁"
0.575863420963
"你要相信这不是最后一天-华晨宇"
0.56902128458
"七日seven days-小野道ono"
0.567467391491
"The truth that you leave-Pianoboy高至豪"
0.562936365604
"椿-沈以诚"
0.560849130154
"世间美好与你环环相扣-柏松"
0.559100747108
"克卜勒-孙燕姿"
0.55870193243


18790760
"Wildest Moments-Jessie Ware"

相似歌曲和相似度分别为:
"第三人称-Todd Li"
0.542654037476
"MELANCHOLY-White Cherry"
0.536370813847
"10%-SynBlazer"
0.53133648634
"Roundabout-Yes"
0.531289100647
"1%-Oscar Scheller"
0.528999328613
"后来-刘若英"
0.526810228825
"Creep-Gamper & Dadoni"
0.523189365864
"Kitarman-Ghulamjan Yakup"
0.521900355816
"大眠 (完整版)-小乐哥"
0.521808922291
"我想以世纪和你在一起-棱镜"
0.520630300045


4898223
"Universe Song-土岐麻子"

相似歌曲和相似度分别为:
"Adagio for Summer Wind-清水準一"
0.671902596951
"无人之岛-任然"
0.653309166431
"DJ DJ给我一条K (DJ抖音版)-安筱冷"
0.653192460537
"Something Just Like This (Megamix)-AnDyWuMUSICLAND"
0.650882899761
"My Heart Will Go On-满舒克"
0.649816930294
"Summer-久石譲"
0.649288952351
"冬眠-司南"
0.645800054073
"I Want You To Know (Hella x Pegato Remix) -Pegato"
0.641312420368
"所念皆星河-CMJ"
0.641280949116
"Neon Rainbow (feat. Anna Yvette)-Rameses B"
0.641224443913


1342678507
"Flying Saucer-Shlump"

相似歌曲和相似度分别为:
"The Lost Ballerina (Radio Edit)-Fiona Joy Hawkins"
0.587948739529
"水星记-郭顶"
0.582286775112
"Cyka Blyat-DJ Blyatman"
0.579136252403
"Crusade-Marshmello"
0.575079441071
"蓝-石白其"
0.570292174816
"愿你余生漫长-王贰浪"
0.570254147053
"你要相信这不是最后一天-华晨宇"
0.566699206829
"大课间跑步音乐-群星"
0.566686093807
"See You Again-Wiz Khalifa"
0.565815865993
"想自由-林宥嘉"
0.563404619694


558572724
"刘若英-后来(水潇 Remix)-二狗村高富帅"

相似歌曲和相似度分别为:
"Little Girl (As Featured in \"Unbroken: Path to Redemption\" Film)-Andrea Litkei"
0.561440587044
"大城小爱-王力宏"
0.548691391945
"You Look Lovely-音乐治疗"
0.544121265411
"关山酒-等什么君"
0.543048799038
"囍(Chinese Wedding)-葛东琪"
0.53617054224
"红色高跟鞋-蔡健雅"
0.534194111824
"世间美好与你环环相扣-柏松"
0.532548666
"Dancing With Your Ghost-Sasha Sloan"
0.532440066338
"The Way I Still Love You-Reynard Silva"
0.532300829887
"Be My Mistake-The 1975"
0.532189667225


574274427
"Whip Blow-Yuji Kondo"

相似歌曲和相似度分别为:
"那女孩对我说 (完整版)-Uu"
0.466711193323
"Che m'importa del mondo-Rita Pavone"
0.460101604462
"荒野魂斗罗 (Live)-华晨宇"
0.444359987974
"Monsters (Live)-周深"
0.440917819738
"寒鸦少年 (Live)-华晨宇"
0.43233910203
"Reality-Lost Frequencies"
0.418823868036
"寒鸦少年-华晨宇"
0.418192714453
"吹梦到西洲(四合院版本)(Cover:恋恋故人难)-四只烤翅"
0.4164057374
"Sayama Rain 2?(?Demo)-The Nature Sounds Society Japan"
0.415658026934
"神树 (Live)-华晨宇"
0.410130620003


22637718
"どうか届きますように-SMAP"

相似歌曲和相似度分别为:
"星屑ビーナス-Aimer"
0.52750056982
"There For You-Martin Garrix"
0.522041022778
"Blanc-Sylvain Chauveau"
0.503010869026
"Pyro-Chester Young"
0.50101774931
"21 Miles-MY FIRST STORY"
0.499602258205
"“露を吸う群”-増田俊郎"
0.498453527689
"我-张国荣"
0.495759695768
"Manta-刘柏辛Lexie"
0.495319634676
"ᐇ-Seto"
0.495067447424
"Cyka Blyat-DJ Blyatman"
0.493984639645


1376148033
"爱要坦荡荡(Cover:萧潇)-小天才鸭"

相似歌曲和相似度分别为:
"那女孩对我说 (完整版)-Uu"
0.548079669476
"intro (w rook1e)-barnes blvd."
0.540413379669
"无人之岛 (Cover:任然)-是你的垚"
0.517935693264
"You Look Lovely-音乐治疗"
0.51715862751
"pure imagination-ROOK1E"
0.515536487103
"I Want You To Know (Hella x Pegato Remix) -Pegato"
0.514691889286
"Wonderful World-ChakYoun9"
0.51469117403
"GOOD NIGHT-Lil Ghost小鬼"
0.514522790909
"好几年-刘心"
0.512091457844
"7 %-XMASwu"
0.511670172215


1407561335
"去追一只鹿-万象凡音"

相似歌曲和相似度分别为:
"Late summer-周涵"
0.60853689909
"星茶会-灰澈"
0.604638457298
"嚣张-en"
0.602224886417
"最甜情歌-红人馆"
0.601751744747
"蓝-石白其"
0.60148859024
"Monody (Radio Edit)-TheFatRat"
0.601218402386
"My Heart Will Go On-满舒克"
0.600651681423
"只是太爱你-丁芙妮"
0.599411010742
"The rain-Vsun"
0.598190009594
"Frisbee-Ahxello"
0.59788608551

标签:playlist,机器,name,记录,song,dic,学习,data,id
来源: https://blog.csdn.net/z17772002134/article/details/103996387