Random variables and Random Process/随机变量和随机过程
作者:互联网
Random Variables:
(随机变量)
1.Bernoulli Random Variable:
(伯努利随机变量)
It is a discrete binary-valued that takes 0 and 1 with probability 1-p and p respectively.
(它是一个离散的二进制值,取0和1的概率分别为1-p和p)
,
2.Binomial Random Variable:
(二项随机变量)
This random varible models the number of heads when a coin is flipped n times and the probability of head is p,noted as:
(该随机变量是一个硬币抛n次,p次得到正面的概率的模型,记为)
3.Uniform Random Variable
(均匀随机变量)
It is continuous random variable with pdf(probability density function)
(它是一个连续的随机变量,其概率密度函数如下:)
4.Gaussian Random Varriable:
(高斯随机变量)
It is continuous random variable defined as
(它是一个连续的随机变量,记为:)
where m is the mean that E[x]=m
(在这里,m是它的平均值,E[x]=m)
σ is the standard giving the pdf
(使用σ规定标准的概率密度函数为 )
In Gaussian random variable,there are some definition to notice:
(在高斯随机变量中,需要注意以下几个定义:)
I.Q function:
(Q 函数)
II.CDF:cumulative distribution function
(累积分布函数)
where u=(t-m)/σ
III.Complementary Error Function:
(余误差函数)
with the definitions above,we have:
(根据这些定义,我们可以推出:)
P(x>a)=1-F(a)=Q((a-m)/σ)
P(x<a)=F(a)=Q((m-a)/σ)
Q(x)=0.5*erfc(x/1.414)
Limit theorems of sums of random variable:
(随机变量和的极限定理)
Given a set of random variable ,where i=1~n,there are two limit theorems governing their running average:
(有两个极限定理控制它们的滑动平均值)
1.The law of large number:If n becomes sufficiently large,then converges to
(大数定理:如果n足够大,那么收敛于)
2.Central limit:If n becomes sufficiently large,then converges to N(0,1)
(中心极限法则:如果n足够大,那么收敛于N(0,1))
Random Process:
(随机过程)
A random process is a collection of infinite random variables{x(t)} defined over a common probability space.
(随机过程是由公共概率空间上定义的无限个随机变量组成的)
The mean of a random process x(t) is defined as
(其平均值定义为:)
The autocorrelation of x(t) is:
(其自相关函数定义为:)
The cross-correlation of x(t) and y(t) is:
(其互相关函数定义为:)
Wide-Sense Stationary Random Process:
(广义平稳随机过程)
x(t) is Wide-Sense Stationary if its mean is constant and : where
(如果x(t)的平均值是个常数并且其自相关函数,,那么它就是广义平稳的)
x(t) and y(t) are Wide-Sense Stationary if they are both Wide-Sense Stationary and ,where
(如果x(t),y(t)分别广义平稳并且其互相关函数,,那么它们互相广义平稳)
Wiener-khinchin theorem:
(维纳-辛钦定理)
PSD:Power spectral density
The PSD of Wide-Sense Stationary Random Process
(广义平稳随机过程的功率谱密度函数)
The power of x(t) is
(其能量为)
When a Wide-Sense Stationary signal x(t) pass through an LTI system,the output y(t) and x(t) are Wide-Sense Stationary.
In this situation,there are equations:
(当一个广义平稳的信号x(t)通过线性时不变系统时,输出y(t)和输入x(t)是广义平稳的,在这情况下,有以下的公式需注意:)
1.
2.
3.
4.Cross spectral density:
(交叉谱密度)
5.PSD:
Gaussian Random Process:
(高斯随机过程)
A real random process x(t) is Gaussian if all random variable for any i>0 are jointly gaussian.
(如果对于任何的i>0,所有随机变量都是联合高斯的,则实随机过程x(t)是高斯的。)
Linear filtering of Gaussian random process results in a Gaussian random process.
(对一个高斯随机过程线性滤波,产生的结果依然是高斯随机过程)
White Random Process:
(白随机过程)
A random process is white if its PSD is constant for all frequencies.
(如果一个随机过程的功率谱密度在所有功率上都是常数,那么它是一个白随即过程)
标签:random,Process,Stationary,variables,Random,随机,Sense,随机变量 来源: https://blog.csdn.net/Katsura95/article/details/87965944