Graphs
作者:互联网
Presentations
- Directed Graph
邻接矩阵&邻接表 - Undirected Graph
- Adjacency Matrix
- Space: Θ ( ∣ V ∣ 2 ) Θ(|V|^2) Θ(∣V∣2)
- Adjacency List
- Space: Θ ( ∣ V ∣ + ∣ E ∣ ) Θ(|V| + |E|) Θ(∣V∣+∣E∣)
- ADT
class Graph { // Graph abstract class
public:
virtual int n() =0; // # of vertices
virtual int e() =0; // # of edges
// Return index of first, next neighbor
virtual int first(int) =0; //
virtual int next(int, int) =0;
// Store new edge
virtual void setEdge(int, int, int) =0;
// Delete edge defined by two vertices
virtual void delEdge(int, int) =0;
// Weight of edge connecting two vertices
virtual int weight(int, int) =0;
virtual int getMark(int) =0;
virtual void setMark(int, int) =0;
};
这里主要注意first
和next
的使用方法, 下图中
first(0)=1
next(0,1)=4
(0的下一个的下一个)
first(3)=1
next(3,first(3))=2
next(4,next(4,first(4)))
=2
这个其实是按照数字大小排序的
Graph Traversal
Depth First Search
// Depth first search
void DFS(Graph* G, int v) {
PreVisit(G, v); // Take action
G->setMark(v, VISITED);
for (int w = G->first(v);
w < G->n();
w = G->next(v,w))
if (G->getMark(w) == UNVISITED)
DFS(G, w);
PostVisit(G, v); // Take action
}
一条路走到底 遇到不能走的再一个一个返回 注意在遍历的时候要顺着一个方向(本遍历是按照字母的顺序)
Breadth First Search
这个图画错了 第二层是``b和e 到了每个节点以后访问哪个节点是按照字母大小排序的
void BFS(Graph* G, int start,Queue<int>*Q) {
int v, w;
Q->enqueue(start); // Initialize Q
G->setMark(start, VISITED);
while (Q->length() != 0) { // Process Q
Q->dequeue(v);
PreVisit(G, v); // Take action
for(w=G->first(v); w<G->n(); w=G->next(v,w))
if (G->getMark(w) == UNVISITED) {
G->setMark(w, VISITED);
Q->enqueue(w);
}
PostVisit(G, v); // Take action
}
}
一层一层向下遍历
Topological Sort (拓扑排序)
- Algorithm for a directed acyclic(无环) graph :An ordering of vertices in a directed acyclic graph, such that if there is a path from
vi
tovj
, thenvj
appears aftervi
in the ordering. - 每个顶点出现且只出现一次。
- 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
void topsort(Graph* G) { // Topological sort
int i;
for (i=0; i<G->n(); i++) // Initialize
G->setMark(i, UNVISITED);
for (i=0; i<G->n(); i++) // Do vertices
if (G->getMark(i) == UNVISITED)
tophelp(G, i); // Call helper
}
void tophelp(Graph* G, int v) { // Process v
G->setMark(v, VISITED);
for (int w = G->first(v); w < G->n(); w = G->next(v,w))
if (G->getMark(w) == UNVISITED)
tophelp(G, w);
printout(v); // PostVisit for Vertex v
}
- 注意这里
for (i=0; i<G->n(); i++)
保证所有顶点都被访问过,因为有的任可能是没有和别的连接的 - 是从后向前输出 用的时候要反转
- 其实就是
DFS
只是最后是按照返回的顺序输出的
Shortest Paths Problems
d(A, B)
is the shortest distance from vertexA
toB
w(A, B)
is the weight of the edge connectingA
toB
- If there is no such edge, then
w(A, B) = ∞
- If there is no such edge, then
Dijkstra’s Algorithm
Linear Approach
// Compute shortest path distances from s,
// return them in D
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w;
for (i=0; i < G->n(); i++) // Initialization
D[i] = INFINITY;
D[s] = 0; //开始点的距离设置为0
for (i=0; i < G->n(); i++) { // 访问所有顶点
v = minVertex(G, D); //找到当前的最小值
if (D[v] == INFINITY) return; //只有一个节点的情况
G->setMark(v, VISITED); //标记已访问过
for (w=G->first(v); w<G->n(); w = G->next(v,w)) //遍历当前节点的相邻节点 更新
if (D[w] > (D[v] + G->weight(v, w)))
D[w] = D[v] + G->weight(v, w);
}
}
// Find min cost vertex
int minVertex(Graph* G, int* D) {
int i, v;
// Set v to an unvisited vertex
//从第一个未被访问过的开始
for (i=0; i<G->n(); i++)
if (G->getMark(i) == UNVISITED)
{ v = i; break; }
// Now find smallest D value
//找到最小的顶点值
for (i++; i<G->n(); i++)
if ((G->getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;
return v;
}
- Total Cost:
Θ
(
2
∣
V
∣
2
+
∣
E
∣
)
=
Θ
(
∣
V
∣
2
)
Θ(2|V|^2 + |E|) = Θ(|V|^2)
Θ(2∣V∣2+∣E∣)=Θ(∣V∣2)
- Dense graph ( Θ ( ∣ E ∣ ) Θ(|E|) Θ(∣E∣) approaches Θ ( ∣ V ∣ 2 ) ) Θ(|V|^2 )) Θ(∣V∣2)): Θ ( ∣ V ∣ 2 ) Θ( |V|^2) Θ(∣V∣2)
- Sparse graph Θ ( ∣ E ∣ ) Θ(|E|) Θ(∣E∣) approaches Θ ( ∣ V ∣ ) ) Θ(|V|)) Θ(∣V∣)): Θ ( ∣ V ∣ 2 ) Θ( |V|^2) Θ(∣V∣2)
- 外层循环是
V
,找最小值是V
,更新最小值相邻节点是E
- 适合
Dence graph
Min Heap Approach
class DijkElem {
public:
int vertex, distance;
DijkElem() { vertex = NULL; distance = NULL; }
DijkElem(int v, int d) { vertex = v; distance = d; }
};
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w; // v is current vertex
DijkElem temp;
DijkElem E[G->e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
minheap<DijkElem, DDComp> H(E, 1, G->e());
for (i=0; i<G->n(); i++) { // Get distances
//v找到第一个unvisited
do {
if(!H.removemin(temp)) return;
v = temp.vertex;
} while (G->getMark(v) == VISITED);
G->setMark(v, VISITED); //标记访问过
if (D[v] == INFINITY) return;
for(w=G->first(v); w<G->n(); w=G->next(v,w))
if (D[w] > (D[v] + G->weight(v, w))) {
D[w] = D[v] + G->weight(v, w);
temp.distance = D[w]; temp.vertex = w;
H.insert(temp); // Insert in heap
}
}
}
- Total Cost:
Θ
(
(
∣
V
∣
+
∣
E
∣
)
x
l
o
g
2
∣
E
∣
)
Θ((|V| + |E|) x log_2|E|)
Θ((∣V∣+∣E∣)xlog2∣E∣)
- Removemin : Θ ( ∣ V ∣ x l o g 2 ∣ E ∣ ) ) Θ(|V| x log_2|E|)) Θ(∣V∣xlog2∣E∣))
- Insert : Θ ( ∣ E ∣ x l o g 2 ∣ E ∣ ) ) Θ(|E| x log_2|E|)) Θ(∣E∣xlog2∣E∣))
- Dense graph : Θ ( ∣ V ∣ 2 x l o g 2 ∣ V ∣ ) Θ( |V|^2 x log_2|V| ) Θ(∣V∣2xlog2∣V∣)
- Sparse graph : Θ ( ∣ V ∣ x l o g 2 ∣ V ∣ ) Θ( |V| x log_2|V| ) Θ(∣V∣xlog2∣V∣)
- 适合
Sparse graph
All Pairs Shortest Paths Problem
前面是找两个点之间的 这个是找全部的
Floyd’s Algorithm
d(i,k) VS d(i,j)+d(j,k)
找到一个连接两点的中间结点
每次按顺序 选择一个节点作为中间结点
//Floyd's all-pairs shortest paths algorithm
void Floyd(Graph* G) {
int D[G->n()][G->n()]; // Store distances
for (int i=0; i<G->n(); i++) // Initialize
for (int j=0; j<G->n(); j++)
D[i][j] = G->weight(i, j);
// Compute all k paths
for (int k=0; k<G->n(); k++)
for (int i=0; i<G->n(); i++)
for (int j=0; j<G->n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];
}
- Time complexity =
Θ
(
∣
V
∣
3
)
Θ(|V|3)
Θ(∣V∣3)
Minimum-Cost Spanning Trees
- Minimal Cost Spanning Tree (MST) is a subgraph of G
- has minimum total cost as measured by summing the values of all the edges in the subset
- keeps the vertices connected
- 就是可以连接所有点并且权重和最小的几条边
Prim’s Algorithm
- Similar to Dijkstra’s algorithm for finding the single source shortest paths
- seek the next closest vertex to any vertex currently in the MST
- Same result with different starting vertices
void Prim(Graph* G, int* D, int s) {
int V[G->n()]; // Who's closest
int i, w;
for (i=0; i<G->n(); i++) { // Do vertices
int v = minVertex(G, D);
G->setMark(v, VISITED);
if (D[v] == INFINITY) return;
if (v != s) AddEdgetoMST(V[v], v);
for (w=G->first(v); w<G->n();w = G->next(v,w))
if (D[w] > G->weight(v,w)) {
D[w] = G->weight(v,w); // Update dist
V[w] = v; // Update who it came from
}
}
}
- 每次找到与已经访问的节点最近的节点 标记这个节点已访问并且记录这条边
Kruskal’s Algorithm
- Initially, each vertex is in its own MST
- Merge two MST’s that have the shortest edge between them
Class KruskElem {
public:
int from, to, distance;
KruskElem( ) { from=-1; to=-1; distance=-1; }
KruskElem(int f, int t, int d)
{ from=f; to=t; distance=d; }
};
Kruskal(Graph& G) { // Kruskal's MST algorithm
Gentree A[G->n( )]; // Equivalence class array
KruskElem E[G->e( )]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G->n( ); i++) // Put edges on array
for (int w = G->first(i); w<G->n( ); w = G->next(i,w)) {
E[edgecnt].distance = G->weight(i,w);
E[edgecnt].from = i;
E[edgecnt++].to = w;
}
Minheap<KruskElem,KKComp> H(E, edgecnt, edgecnt);
int numMST = G->n( ); // Init n equiv classes
for (i=0; numMST>1; i++) { // Combine equiv classes
KruskElem temp;
H.removemin(temp); // Get next cheap edge
int v = temp.from;
int u = temp.to;
if (A.differ(v, u)) { // If different equiv classes
A.UNION(v, u); // Combine equiv classes
AddEdgetoMST(v,u); // Add to MST
numMST--; // One less MST
}
}
}
-
Steps
- Prepare the Krusk Elem Edge Node
- Build the MinHeap using Krusk Elem
- Remove the minimum value
- Add the path if its vertices are not connected
- Connect these vertices
-
按照minheap removemin的方法每次提出一个node 每次检查那条边上的两个顶点是否为一个祖先 如果不是就插入这条边
-
Total cost
- Worst case: Θ ( ∣ E ∣ l o g ∣ E ∣ ) Θ(|E| log |E|) Θ(∣E∣log∣E∣)
- Average case: close to Θ ( ∣ V ∣ l o g ∣ E ∣ ) Θ(|V| log |E|) Θ(∣V∣log∣E∣)
标签:int,Graph,vertex,++,next,Graphs,first 来源: https://blog.csdn.net/yxyxxxyyyy/article/details/121525758