其他分享
首页 > 其他分享> > 御神楽的学习记录之基于I2C协议的AHT20温湿度传感器的数据采集

御神楽的学习记录之基于I2C协议的AHT20温湿度传感器的数据采集

作者:互联网

文章目录


前言

I2C 总线支持任何IC 生产过程(NMOS CMOS、双极性)。两线――**串行数据(SDA)串行时钟 (SCL)**线在连接到总线的器件间传递信息。每个器件都有一个唯一的地址识别(无论是微控制器——MCU、LCD 驱动器、存储器或键盘接口),而且都可以作为一个发送器或接收器(由器件的功能决定)。


提示:以下是本篇文章正文内容,下面案例可供参考

一、I2C 协议

1.简介

**I2C 通讯协议(Inter-Integrated Circuit)**是由 Phiilps 公司开发的,由于它引脚少,硬件实
现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地
使用在系统内多个集成电路(IC)间的通讯。
在这里插入图片描述

2.硬件I2C

硬件I2C对应芯片上的I2C外设,有相应I2C驱动电路,其所使用的I2C管脚也是专用的,因而效率要远高于软件模拟的I2C;一般也较为稳定,但是程序较为繁琐。

3.软件I2C

软件I2C一般是用GPIO管脚,用软件控制管脚状态以模拟I2C通信波形。

二、温湿度传感器的数据采集

1、新建项目

1、新建stm32cuber项目
在这里插入图片描述
2、设置项目
在这里插入图片描述

2.项目代码

1、导入AHT20函数库
1、导入头文件和c文件
在这里插入图片描述
2、添加头文件引入路径
在这里插入图片描述
2、修改AHT20.c代码
将函数本地库改为HAL库相应代码

void SDA_Pin_Output_High(void)   //将PB15配置为输出 , 并设置为高电平, PB15作为I2C的SDA
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //将P15配置为输出  并设置为低电平
{

	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA配置为浮空输入
{

	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}

void SCL_Pin_Output_High(void) //SCL输出高电平,P14作为I2C的SCL
{
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL输出低电平
{
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //初始化I2C接口,输出为高电平
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
	
}

3、main.c代码

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include<stdio.h>
#include "AHT20.h" 
/* USER CODE END Includes */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE BEGIN 0 */
int fputc(int ch,FILE *f)
 
{
    HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,0xFFFF);    
		//等待发送结束	
		while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET){
		}		

    return ch;
}

/* USER CODE END 0 */
int main(void)
{
  /* USER CODE BEGIN 1 */
  uint32_t CT_data[2]={0,0};
	volatile int  c1,t1;
	Delay_1ms(500);
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
//  MX_I2C1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  AHT20_Init();
	Delay_1ms(500);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		AHT20_Read_CTdata(CT_data);
		c1 = CT_data[0]*1000/1024/1024;  //计算得到湿度值c1(放大了10倍)
		t1 = CT_data[1]*2000/1024/1024-500;//计算得到温度值t1(放大了10倍)
		printf("正在检测");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		printf("\r\n");
		HAL_Delay(1000);
		printf("温度:%d%d.%d",t1/100,(t1/10)%10,t1%10);
		printf("湿度:%d%d.%d",c1/100,(c1/10)%10,c1%10);
		printf("\r\n");
		printf("等待");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		HAL_Delay(100);
		printf(".");
		printf("\r\n");
		HAL_Delay(1000);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/


3.采集展示

在这里插入图片描述


参考

https://blog.csdn.net/qq_47281915?spm=1001.2014.3001.5509

标签:HAL,温湿度,printf,Delay,AHT20,InitStruct,GPIO,I2C,RCC
来源: https://blog.csdn.net/YuKaguraNe/article/details/121503439