其他分享
首页 > 其他分享> > OpenCV.Scharr梯度

OpenCV.Scharr梯度

作者:互联网

Scharr梯度

Scharr梯度算子分为X方向Y与方向,可以分别计算其各自方向的梯度图像,然后将其进行平均权重相加即可。其声明如下:

Scharr(src, dst, ddepth, dx, dy);

各参数解释如下:

Scharr算子的Kernel如下所示:

在这里插入图片描述

Scharr算子可看作为Sobel算子的增强版,对边缘检测比较有效。

Java代码(JavaFX Controller层)

public class Controller{

    @FXML private Text fxText;
    @FXML private ImageView imageView;
    @FXML private Label resultLabel;

    @FXML public void handleButtonEvent(ActionEvent actionEvent) throws IOException {

        Node source = (Node) actionEvent.getSource();
        Window theStage = source.getScene().getWindow();
        FileChooser fileChooser = new FileChooser();
        FileChooser.ExtensionFilter extFilter = new FileChooser.ExtensionFilter("PNG files (*.png)", "*.png");
        fileChooser.getExtensionFilters().add(extFilter);
        fileChooser.getExtensionFilters().add(new FileChooser.ExtensionFilter("JPG Files(*.jpg)", "*.jpg"));
        File file = fileChooser.showOpenDialog(theStage);

        runInSubThread(file.getPath());

    }

    private void runInSubThread(String filePath){
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    WritableImage writableImage = gradOfScharr(filePath);

                    Platform.runLater(new Runnable() {
                        @Override
                        public void run() {
                            imageView.setImage(writableImage);
                        }
                    });

                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
    
    private WritableImage gradOfScharr(String filePath) throws IOException {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        Mat src = Imgcodecs.imread(filePath);
        Mat dst = new Mat();

        // X-direction gradient
        Mat grad_x = new Mat();
        Imgproc.Scharr(src, grad_x, CvType.CV_32F, 1, 0);
        Core.convertScaleAbs(grad_x, grad_x);

        // Y-direction gradient
        Mat grad_y = new Mat();
        Imgproc.Scharr(src, grad_y, CvType.CV_32F, 0, 1);
        Core.convertScaleAbs(grad_y, grad_y);

        Core.addWeighted(grad_x, 0.5, grad_y, 0.5, 0, dst);

        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".jpg", dst, matOfByte);

        byte[] bytes = matOfByte.toArray();
        InputStream in = new ByteArrayInputStream(bytes);
        BufferedImage bufImage = ImageIO.read(in);

        WritableImage writableImage = SwingFXUtils.toFXImage(bufImage, null);

        return writableImage;
    }

}

运行图

在这里插入图片描述

标签:Mat,梯度,dst,private,OpenCV,Scharr,new,grad
来源: https://blog.csdn.net/kicinio/article/details/121546315