PCL网格最低点滤波GridMinimum
作者:互联网
网格最低点滤波需要指定网格的分辨率,取网格中的最小点作为滤波点。
代码中添加了批量处理,所以有点长。代码如下:
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/filters/grid_minimum.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
typedef PointXYZ PointType;
typedef PointCloud<PointXYZ> Cloud;
typedef const Cloud::ConstPtr ConstCloudPtr;
float default_resolution = 1.0f;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -resolution X = xy resolution of the grid (default: ");
print_value ("%f", default_resolution); print_info (")\n");
print_info (" -input_dir X = batch process all PCD files found in input_dir\n");
print_info (" -output_dir X = save the processed files from input_dir in this directory\n");
}
bool
loadCloud (const std::string &filename, Cloud &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
void
compute (ConstCloudPtr &input, Cloud &output, float resolution)
{
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
GridMinimum<PointType> gm (resolution);
gm.setInputCloud (input);
gm.filter (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
void
saveCloud (const std::string &filename, const Cloud &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
int
batchProcess (const vector<string> &pcd_files, string &output_dir,
float resolution)
{
vector<string> st;
for (size_t i = 0; i < pcd_files.size (); ++i)
{
// Load the first file
Cloud::Ptr cloud (new Cloud);
if (!loadCloud (pcd_files[i], *cloud))
return (-1);
// Perform the feature estimation
Cloud output;
compute (cloud, output, resolution);
// Prepare output file name
string filename = pcd_files[i];
boost::trim (filename);
boost::split (st, filename, boost::is_any_of ("/\\"), boost::token_compress_on);
// Save into the second file
stringstream ss;
ss << output_dir << "/" << st.at (st.size () - 1);
saveCloud (ss.str (), output);
}
return (0);
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Filter a point cloud using the pcl::GridMinimum filter. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
bool batch_mode = false;
// Command line parsing
float resolution = default_resolution;
parse_argument (argc, argv, "-resolution", resolution);
string input_dir, output_dir;
if (parse_argument (argc, argv, "-input_dir", input_dir) != -1)
{
PCL_INFO ("Input directory given as %s. Batch process mode on.\n", input_dir.c_str ());
if (parse_argument (argc, argv, "-output_dir", output_dir) == -1)
{
PCL_ERROR ("Need an output directory! Please use -output_dir to continue.\n");
return (-1);
}
// Both input dir and output dir given, switch into batch processing mode
batch_mode = true;
}
if (!batch_mode)
{
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
// Load the first file
Cloud::Ptr cloud (new Cloud);
if (!loadCloud (argv[p_file_indices[0]], *cloud))
return (-1);
// Perform the feature estimation
Cloud output;
compute (cloud, output, resolution);
// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
}
else
{
if (input_dir != "" && boost::filesystem::exists (input_dir))
{
vector<string> pcd_files;
boost::filesystem::directory_iterator end_itr;
for (boost::filesystem::directory_iterator itr (input_dir); itr != end_itr; ++itr)
{
// Only add PCD files
if (!is_directory (itr->status ()) && boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ())) == ".PCD" )
{
pcd_files.push_back (itr->path ().string ());
PCL_INFO ("[Batch processing mode] Added %s for processing.\n", itr->path ().string ().c_str ());
}
}
batchProcess (pcd_files, output_dir, resolution);
}
else
{
PCL_ERROR ("Batch processing mode enabled, but invalid input directory (%s) given!\n", input_dir.c_str ());
return (-1);
}
}
}
来源:PCL官方示例
标签:info,网格,GridMinimum,PCL,input,print,output,resolution,dir 来源: https://blog.csdn.net/com1098247427/article/details/120697054