多loss的反向传播路径
作者:互联网
转自:https://www.jb51.net/article/213149.htm
1.多个loss
x = torch.tensor(2.0, requires_grad=True) y = x**2 z = x # 反向传播 y.backward() x.grad tensor(4.) z.backward() x.grad tensor(5.) ## 累加
官方文档:
torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None)
Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule.
不同路径的计算结果会累加到tensor上。
标签:loss,None,tensor,graph,路径,反向,backward,grad,tensors 来源: https://www.cnblogs.com/BlueBlueSea/p/15542288.html