cublas fp16
作者:互联网
编译选项: nvcc 4.cpp -o test_gemm -lcudart -lcuda -lcublas -std=c++11
#include <sys/time.h> #include <cuda_profiler_api.h> #include <cublas_v2.h> #include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime.h> #include <stdio.h> int8_t float2int8(float f, float scale) { int8_t i = int8_t(f * scale); if (i < -127) i = -127; if (i > 127) i = 127; return i; } template <typename T, typename S> void allocate_memory(int m, int n, int k, T **A, T **B, S **C) { cudaMallocManaged(A, m * k * sizeof(T)); cudaMallocManaged(B, k * n * sizeof(T)); cudaMallocManaged(C, m * n * sizeof(S)); } template <typename T, typename S> void free_memory(T *A, T *B, S *C) { cudaFree(A); cudaFree(B); cudaFree(C); } template <typename T, typename S> int cublas_gemm_ex(cublasHandle_t handle, cublasOperation_t transA, cublasOperation_t transB, int m, int n, int k, T *A, T *B, S *C, int lda, int ldb, int ldc, S *alpha, S *beta, int algo) { cudaDataType_t AType, BType, CType, ComputeType; if (std::is_same<T, float>::value) { AType = BType = CType = ComputeType = CUDA_R_32F; } else if (std::is_same<T, __half>::value) { AType = BType = CType = ComputeType = CUDA_R_16F; } else if (std::is_same<T, int8_t>::value) { AType = BType = CUDA_R_8I; CType = ComputeType = CUDA_R_32I; } else { printf("Not supported data type."); return -1; } cublasStatus_t status; status = cublasGemmEx(handle, transA, transB, m, n, k, alpha, A, AType, lda, B, BType, ldb, beta, C, CType, ldc, ComputeType, static_cast<cublasGemmAlgo_t>(algo)); if (status == CUBLAS_STATUS_SUCCESS) return 1; else return -1; } template <typename T, typename S> void test_gemm(cublasHandle_t handle, int m, int n, int k, T *A, T *B, S *C, S *alpha, S *beta, int algo, int iteration) { float total_time = 0; for (int i = 0; i < iteration; ++i) { struct timeval start, end; cudaDeviceSynchronize(); cudaProfilerStart(); gettimeofday(&start, NULL); int success = cublas_gemm_ex(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, B, A, C, n, k, n, alpha, beta, static_cast<cublasGemmAlgo_t>(algo)); cudaDeviceSynchronize(); gettimeofday(&end, NULL); cudaProfilerStop(); if (success > 0 && i > 0) total_time += (end.tv_sec - start.tv_sec) * 1000 + (end.tv_usec - start.tv_usec) * 0.001; } if (total_time > 0) printf("algo %d: %.3f ms\n", algo, total_time / (iteration - 1)); } int main() { int m = 4096, n = 8192, k = 1024; printf("shape: (%d, %d) x (%d, %d)\n", m, k, k, n); int start_algo = CUBLAS_GEMM_DEFAULT; int end_algo = CUBLAS_GEMM_ALGO23; int start_algo_t_op = CUBLAS_GEMM_DEFAULT_TENSOR_OP; int end_algo_t_op = CUBLAS_GEMM_ALGO15_TENSOR_OP; int iteration = 10; float *fA, *fB, *fC; __half *hA, *hB, *hC; int8_t *iA, *iB; int32_t *iC; float f_alpha = 1, f_beta = 0; __half h_alpha = __float2half_rn(1.0), h_beta = __float2half_rn(0.0); int32_t i_alpha = 1, i_beta = 0; allocate_memory(m, n, k, &fA, &fB, &fC); allocate_memory(m, n, k, &hA, &hB, &hC); allocate_memory(m, n, k, &iA, &iB, &iC); for (int i = 0; i < m * k; ++i) { fA[i] = float(i % 255 - 127) / 127; hA[i] = __float2half_rn(fA[i]); iA[i] = float2int8(fA[i], 127); } for (int i = 0; i < k * n; ++i) { fB[i] = float(i % 255 - 127) / 127; hB[i] = __float2half_rn(fB[i]); iB[i] = float2int8(fB[i], 127); } cublasHandle_t handle; cublasCreate(&handle); printf(">>>>>>>>>>>>>>>>> test fp32 >>>>>>>>>>>>>>>>>\n"); for (int algo = start_algo; algo <= end_algo; ++algo) test_gemm(handle, m, n, k, fA, fB, fC, &f_alpha, &f_beta, algo, iteration); for (int algo = start_algo_t_op; algo <= end_algo_t_op; ++algo) test_gemm(handle, m, n, k, fA, fB, fC, &f_alpha, &f_beta, algo, iteration); printf(">>>>>>>>>>>>>>>>> test fp16 >>>>>>>>>>>>>>>>>\n"); for (int algo = start_algo; algo <= end_algo; ++algo) test_gemm(handle, m, n, k, hA, hB, hC, &h_alpha, &h_beta, algo, iteration); for (int algo = start_algo_t_op; algo <= end_algo_t_op; ++algo) test_gemm(handle, m, n, k, hA, hB, hC, &h_alpha, &h_beta, algo, iteration); printf(">>>>>>>>>>>>>>>>> test int8 >>>>>>>>>>>>>>>>>\n"); for (int algo = start_algo; algo <= end_algo; ++algo) test_gemm(handle, m, n, k, iA, iB, iC, &i_alpha, &i_beta, algo, iteration); for (int algo = start_algo_t_op; algo <= end_algo_t_op; ++algo) test_gemm(handle, m, n, k, iA, iB, iC, &i_alpha, &i_beta, algo, iteration); printf(">>>>>>>>>>>>>>>>> compare result >>>>>>>>>>>>>>>>>\n"); printf("fp32: "); for (int i = 0; i < 10; ++i) printf("%.5f%c", fC[i], " \n"[i==9]); printf("fp16: "); for (int i = 0; i < 10; ++i) printf("%.5f%c", float(hC[i]), " \n"[i==9]); printf("int8: "); for (int i = 0; i < 10; ++i) printf("%.5f%c", float(iC[i])/127/127, " \n"[i==9]); free_memory(iA, iB, iC); free_memory(fA, fB, fC); free_memory(hA, hB, hC); return 0; }
标签:float,fp16,int,127,start,cublas,algo,printf 来源: https://www.cnblogs.com/lin1216/p/15535621.html