【密码学】Diffie–Hellman Key Exchange
作者:互联网
本程序演示如下过程:
# ============================================================================
# Copyright (c) 2021 Zhou Jin, Shandong University. All rights reserved.
# Elgamal.py - The core part of this algorithm
# Last edited time: 2021/11/3 15:48
#
# THIS PROGRAM IS FREE SOFTWARE
# If you have any question, email elford@foxmail.com
# ============================================================================
import random
# Find the greatest common divisor
def gcd(a, b):
if a < b:
return gcd(b, a)
elif a % b == 0:
return b
else:
return gcd(b, a % b)
# Quick power & modulo
def power(a, b, c):
ans = 1
while b != 0:
if b & 1:
ans = (ans * a) % c
b >>= 1
a = (a * a) % c
return ans
# Detection of large prime numbers
def Miller_Rabin(n):
a = random.randint(2, n - 2) # Randomly find 'a' which is belong to [2,n-2]
s = 0 # S is the power of factor 2 in d
d = n - 1
while (d & 1) == 0: # Let's factor out all the 2's in d.
s += 1
d >>= 1
x = power(a, d, n)
for i in range(s): # Perform s secondary probes
newX = power(x, 2, n)
if newX == 1 and x != 1 and x != n - 1:
return False # Using the inverse of the quadratic theorem, n is determined to be composite.
x = newX
if x != 1: # If x=a^(n-1) (mod n), then n is determined to be composite.
return False
return True # Judge by the converse of Fermat's little theorem. The number that survives this test
# is most likely prime.
# Extended Euclidean algorithm, ab=1 (mod m), yields the multiplicative inverse b of A under module m
def Extended_Eulid(a: int, m: int) -> int:
def extended_eulid(a: int, m: int):
if a == 0: # boundary condition
return 1, 0, m
else:
x, y, gcd = extended_eulid(m % a, a) # recursion
x, y = y, (x - (m // a) * y) # Recursively, the left end is the upper layer
return x, y, gcd # Returns the result of the first level calculation.
# The final return y value is the multiplication inverse of b in mode a
# If y is complex, y plus a is the corresponding positive inverse
n = extended_eulid(a, m)
if n[1] < 0:
return n[1] + m
else:
return n[1]
# Generate the field parameter alpha
def Generate_alpha(p: int) -> int:
return random.randint(2, p)
# Generate a prime number less than p, approximately 512bits long, as the private key
def Generate_private_key(p: int) -> int:
pri = random.randint(2, p - 2)
while gcd(pri, p) != 1:
pri = random.randint(2, p - 2)
return pri
# Bob or Alice uses the field parameter P and the resulting mask to encrypt the message
def encrypt(message, p, Key_mask) -> int:
ciphertext = (message * Key_mask) % p
return ciphertext
# Bob or Alice decrypts the ciphertext using the field parameter P and the masks obtained by them
def decrypt(ciphertext, p, Key_mask):
# Inverse mask
inverse_element = Extended_Eulid(Key_mask, p)
# Decode
plaintext = (ciphertext * inverse_element) % p
return plaintext
def quick_power(a: int, b: int) -> int:
ans = 1
while b != 0:
if b & 1:
ans = ans * a
b >>= 1
a = a * a
return ans
if __name__ == '__main__':
print("Message: ")
message = int(input())
if type(message) != int:
raise ValueError("Must be an integer!")
p = 11483166658585481347156601461652228747628274304826764495442296421425015253161813634115028572768478982068325434874240950329795338367115426954714853905429627
alpha = 9312361210673900259563710385567927129060681135208816314239276128613236057152973946513124497622387244317947113336161405537229616593187205949777328006346729
# Alice selects her own private key, calculates her own public key, and passes the public key to Bob
Private_Alice = Generate_private_key(p)
Public_Alice = power(alpha, Private_Alice, p)
# Bob selects his private key, calculates his public key, and places the public key on the network
Private_Bob = Generate_private_key(p)
Public_Bob = power(alpha, Private_Bob, p)
# Bob and Alice calculate the mask key separately, and the results should be the same
Key_mask_Alice = power(Public_Alice, Private_Bob, p)
Key_mask_Bob = power(Public_Bob, Private_Alice, p)
# Bob encrypts the message
ciphertext_Alice = encrypt(message, p, Key_mask_Bob)
# Alice encrypts the message
ciphertext_Bob = encrypt(message, p, Key_mask_Alice)
# Alice decrypts the message
plaintext_Alice = decrypt(ciphertext_Bob, p, Key_mask_Alice)
# Alice decrypts the message
plaintext_Bob = decrypt(ciphertext_Alice, p, Key_mask_Bob)
print("Alice to Bob: ")
print(Public_Alice)
print("Bob to Alice: ")
print(Public_Bob)
print("Result (Alice view):")
print(plaintext_Alice)
print("Result (Bob view):")
print(plaintext_Bob)
输出结果:
标签:return,int,mask,Alice,Key,Diffie,Hellman,Bob,密码学 来源: https://blog.csdn.net/Elford/article/details/121123158