其他分享
首页 > 其他分享> > Kettle的安装及简单使用

Kettle的安装及简单使用

作者:互联网

Kettle的安装及简单使用

目录

一、kettle概述

1、什么是kettle

Kettle是一款开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。

2、Kettle工程存储方式

(1)以XML形式存储

(2)以资源库方式存储(数据库资源库和文件资源库)

3、Kettle的两种设计

image.png

4、Kettle的组成

image.png

5、kettle特点

image.png


二、kettle安装部署和使用

Windows下安装

(1)概述

在实际企业开发中,都是在本地环境下进行kettle的job和Transformation开发的,可以在本地运行,也可以连接远程机器运行

(2)安装步骤

1、安装jdk

2、下载kettle压缩包,因kettle为绿色软件,解压缩到任意本地路径即可

3、双击Spoon.bat,启动图形化界面工具,就可以直接使用了

案例1:MySQL to MySQL

把stu1的数据按id同步到stu2,stu2有相同id则更新数据

1、在mysql中创建testkettle数据库,并创建两张表

create database testkettle;

use testkettle;

create table stu1(id int,name varchar(20),age int);

create table stu2(id int,name varchar(20));

2、往两张表中插入一些数据

insert into stu1 values(1001,'zhangsan',20),(1002,'lisi',18), (1003,'wangwu',23);

insert into stu2 values(1001,'wukong');

3、把pdi-ce-8.2.0.0-342.zip文件拷贝到win环境中指定文件目录,解压后双击Spoon.bat,启动图形化界面工具,就可以使用了

image.png

主界面:

image.png

在kettle中新建转换--->输入--->表输入-->表输入双击

image.png

在data-integration\lib文件下添加mysql驱动

image.png

在数据库连接栏目点击新建,填入mysql相关配置,并测试连接

image.png

建立连接后,选择刚刚建好的连接,填入SQL,并预览数据:

image.png

以上说明stu1的数据输入ok的,现在我们需要把输入stu1的数据同步到stu2输出的数据

image.png

注意:拖出来的线条必须是深灰色才关联成功,若是浅灰色表示关联失败

image.png

转换之前,需要做保存

image.png

执行成功之后,可以在mysql查看,stu2的数据

mysql> select * from stu2;
+------+----------+
| id   | name     |
+------+----------+
| 1001 | zhangsan |
| 1002 | lisi     |
| 1003 | wangwu   |
+------+----------+
3 rows in set (0.00 sec)

案例2:使用作业执行上述转换,并且额外在表stu2中添加一条数据

1、新建一个作业

image.png

2、按图示拉取组件

image.png

3、双击Start编辑Start

image.png

4、双击转换,选择案例1保存的文件

image.png

5、在mysql的stu1中插入一条数据,并将stu2中id=1001的name改为wukong

mysql> insert into stu1 values(1004,'stu1',22);
Query OK, 1 row affected (0.01 sec)

mysql> update stu2 set name = 'wukong' where id = 1001;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

6、双击SQL脚本编辑

image.png

7、加上Dummy,如图所示:

image.png

8、保存并执行

image.png

9、在mysql数据库查看stu2表的数据

mysql> select * from stu2;
+------+----------+
| id   | name     |
+------+----------+
| 1001 | zhangsan |
| 1002 | lisi     |
| 1003 | wangwu   |
| 1004 | stu1     |
| 1005 | kettle   |
+------+----------+
5 rows in set (0.00 sec)

案例3:将hive表的数据输出到hdfs

1、因为涉及到hive和hbase(后续案例)的读写,需要修改相关配置文件

修改解压目录下的data-integration\plugins\pentaho-big-data-plugin下的plugin.properties,设置active.hadoop.configuration=hdp26,并将如下配置文件拷贝到data-integration\plugins\pentaho-big-data-plugin\hadoop-configurations\hdp26下

image.png

2、启动hadoop集群、hiveserver2服务

3、进入hive shell,创建kettle数据库,并创建dept、emp表

create database kettle;

use kettle;

CREATE TABLE dept(
    deptno int,
    dname string,
    loc string
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

CREATE TABLE emp(
    empno int,
    ename string,
    job string,
    mgr int,
    hiredate string,
    sal double,
    comm int,
    deptno int
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

4、插入数据

insert into dept values(10,'accounting','NEW YORK'),(20,'RESEARCH','DALLAS'),(30,'SALES','CHICAGO'),(40,'OPERATIONS','BOSTON');

insert into emp values(7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL,20),(7499,'ALLEN','SALESMAN',7698,'1980-12-17',1600,300,30),(7521,'WARD','SALESMAN',7698,'1980-12-17',1250,500,30),(7566,'JONES','MANAGER',7839,'1980-12-17',2975,NULL,20);

5、按下图建立流程图

image.png

image.png image.png image.png image.png image.png image.png image.png image.png

6、保存并运行查看hdfs

image.png image-20210129215501794.png

案例4:读取hdfs文件并将sal大于1000的数据保存到hbase中

1、在HBase中创建一张people表

hbase(main):004:0> create 'people','info'

2、按下图建立流程图

image.png

image.png image.png image.png image.png image.png image.png

三、创建资源库

1、数据库资源库

数据库资源库是将作业和转换相关的信息存储在数据库中,执行的时候直接去数据库读取信息,方便跨平台使用

image.png image.png image.png image.png image.png image.png image.png

2、文件资源库

将作业和转换相关的信息存储在指定的目录中,其实和XML的方式一样

创建方式跟创建数据库资源库步骤类似,只是不需要用户密码就可以访问,跨

平台使用比较麻烦

image.png

四、 Linux下安装使用

1、单机

image.png

2、 集群模式

[root@master]# ./carte.sh master 8080
[root@node1]# ./carte.sh node1 8081
[root@node2]# ./carte.sh node2 8082

http://master:8080


案例:读取hive中的emp表,根据id进行排序,并将结果输出到hdfs上

注意:因为涉及到hive和hbase的读写,需要修改相关配置文件。

修改解压目录下的data-integration\plugins\pentaho-big-data-plugin下的plugin.properties,设置active.hadoop.configuration=hdp26,并将如下配置文件拷贝到data-integration\plugins\pentaho-big-data-plugin\hadoop-configurations\hdp26下

image.png image.png image.png image.png

五、调优

1、调整JVM大小进行性能优化,修改Kettle根目录下的Spoon脚本。

img

参数参考:

-Xmx2048m:设置JVM最大可用内存为2048M。

-Xms1024m:设置JVM促使内存为1024m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。

-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

2、 调整提交(Commit)记录数大小进行优化,Kettle默认Commit数量为:1000,可以根据数据量大小来设置Commitsize:1000~50000

3、尽量使用数据库连接池;

4、尽量提高批处理的commit size;

5、尽量使用缓存,缓存尽量大一些(主要是文本文件和数据流);

6、Kettle是Java做的,尽量用大一点的内存参数启动Kettle;

7、可以使用sql来做的一些操作尽量用sql;

Group , merge , stream lookup,split field这些操作都是比较慢的,想办法避免他们.,能用sql就用sql;

8、插入大量数据的时候尽量把索引删掉;

9、尽量避免使用update , delete操作,尤其是update,如果可以把update变成先delete, 后insert;

10、能使用truncate table的时候,就不要使用deleteall row这种类似sql合理的分区,如果删除操作是基于某一个分区的,就不要使用delete row这种方式(不管是deletesql还是delete步骤),直接把分区drop掉,再重新创建;

11、尽量缩小输入的数据集的大小(增量更新也是为了这个目的);

12、尽量使用数据库原生的方式装载文本文件(Oracle的sqlloader, mysql的bulk loader步骤)。

标签:stu2,kettle,资源库,mysql,data,Kettle,master,简单,安装
来源: https://www.cnblogs.com/lmandcc/p/15456030.html