其他分享
首页 > 其他分享> > 57. Insert Interval

57. Insert Interval

作者:互联网

Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).

You may assume that the intervals were initially sorted according to their start times.

Example 1:

Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]

Example 2:

Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
感觉要解这种题,首先要迅速对可能出现的情况进行分类,比如这道题可以分三类:

聪明的分类,对吧。然后中心思想是:

当当前的interval的end小于newInterval的start时,说明新的区间在当前遍历到的区间的后面,并且没有重叠,这意味着永远都和这个interval无关,所以res添加当前的interval;


当当前的interval的start大于newInterval的end时,说明新的区间比当前遍历到的区间要前面,并且也没有重叠,所以把newInterval添加到res里,和上面的原因类似,并更新newInterval为当前的interval,因为之后只有大的interval才能用上。 


当当前的interval与newInterval有重叠时,merge interval并更新新的newInterval为merge后的。大大,小小

/**
 * Definition for an interval.
 * public class Interval {
 *     int start;
 *     int end;
 *     Interval() { start = 0; end = 0; }
 *     Interval(int s, int e) { start = s; end = e; }
 * }
 */
class Solution {
    public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
        List<Interval> res= new ArrayList<Interval>();
        int l = intervals.size();
        for(Interval each : intervals){
            if(each.end < newInterval.start){
                res.add(each);
            }
            else if(newInterval.end < each.start){
                res.add(newInterval);
                newInterval = each;
            }
            else if(newInterval.start <= each.end || each.start <= newInterval.end){
               newInterval.start = (Math.min(newInterval.start, each.start));
                newInterval.end = (Math.max(newInterval.end, each.end));
            }
        }
        res.add(newInterval);
        return res;
    }
}

挖个坑,后面有时间(福来阁)看看二分法怎么做。


 

 

标签:Insert,newInterval,interval,end,57,Interval,start,intervals,each
来源: https://www.cnblogs.com/wentiliangkaihua/p/10411878.html