郭哥优化余弦距离代码记录
作者:互联网
import numpy as np
import torch
import time
a_list = []
for i in range(32):
a = np.ones((27,512))
a_list.append(a)
t0 = time.time()
mode = torch.zeros((len(a_list),27,512))
for i in range(100):
for j,num in enumerate(a_list):
num_tensor = torch.from_numpy(num)
mode[j] = num_tensor
# num_np = np.stack(a_list, axis=0)
# num_tensor = torch.from_numpy(num_np)
# num_tensor = torch.Tensor(a_list)
t1 = time.time()
print(mode.shape,num_tensor.shape, (t1-t0)/100)
import numpy as np
import torch
import time
a_list = []
for i in range(32):
a = np.zeros((27,512))
a_list.append(a)
t0 = time.time()
for i in range(100):
j = 0
for num in a_list:
num_tensor = torch.from_numpy(num)
if j == 0:
first_tensor = torch.reshape(num_tensor, (1, 27, 512))
elif j == 1:
second_tensor = torch.reshape(num_tensor, (1, 27, 512))
new_tensor = torch.cat((second_tensor, first_tensor), 0)
else:
num_tensor = torch.reshape(num_tensor, (1, 27, 512))
new_tensor = torch.cat((new_tensor, num_tensor), 0)
j += 1
# num_np = np.stack(a_list, axis=0)
# num_tensor = torch.from_numpy(num_np)
# num_tensor = torch.Tensor(a_list)
t1 = time.time()
print(new_tensor.shape, t1-t0)
标签:郭哥,tensor,代码,torch,list,余弦,num,time,np 来源: https://blog.csdn.net/weixin_43489941/article/details/120880100