其他分享
首页 > 其他分享> > 浅谈:无锁并发框架Disruptor

浅谈:无锁并发框架Disruptor

作者:互联网

 介绍:

       Disruptor是一个开源框架,研发的初衷是为了解决高并发下列队锁的问题,最早由LMAX(一种新型零售金融交易平台)提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单(这个真假就不清楚了!牛皮谁都会吹)。

框架最经典也是最多的应用场景:生产消费。

        讲到生产消费模型,大家应该马上就能回忆起前面我们已经学习过的BlockingQueue课程,里面我们学习过多种队列,但是这些队列大多是基于条件阻塞方式的,性能还不够优秀!

多种队列:

       ArrayBlockingQueue:基于数组形式的队列,通过加锁的方式,来保证多线程情况下数据的安全;

       LinkedBlockingQueue:基于链表形式的队列,也通过加锁的方式,来保证多线程情况下数据的安全;

       ConcurrentLinkedQueue:基于链表形式的队列,通过compare and swap(简称CAS)协议的方式, 来保证多线程情况下数据的安全,不加锁,主要使用了Java中的sun.misc.Unsafe类来实现;

设计原理:

Disruptor通过以下设计来解决队列速度慢的问题:

       为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好(回顾一下:CPU加载空间局部性原则)。

       数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。

       每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。

数据结构:

       框架使用RingBuffer来作为队列的数据结构,RingBuffer就是一个可自定义大小的环形数组。除数组外还有一个序列号(sequence),用以指向下一个可用的元素,供生产者与消费者使用。原理图如下所示:

Sequence

        mark:Disruptor通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。

数组+序列号设计的优势是什么呢?

       回顾一下我们讲HashMap时,在知道索引(index)下标的情况下,存与取数组上的元素时间复杂度只有O(1),而这个index我们可以通过序列号与数组的长度取模来计算得出,index=sequence % table.length。当然也可以用位运算来计算效率更高,此时table.length必须是2的幂次方(原理前面讲过)。

概念与作用

等待策略:

BlockingWaitStrategy

       Disruptor的默认策略是BlockingWaitStrategy。在BlockingWaitStrategy内部是使用锁和condition来控制线程的唤醒。BlockingWaitStrategy是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现。

SleepingWaitStrategy

       SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,通过使用LockSupport.parkNanos(1)来实现循环等待。一般来说Linux系统会暂停一个线程约60µs,这样做的好处是,生产线程不需要采取任何其他行动就可以增加适当的计数器,也不需要花费时间信号通知条件变量。但是,在生产者线程和使用者线程之间移动事件的平均延迟会更高。它在不需要低延迟并且对生产线程的影响较小的情况最好。一个常见的用例是异步日志记录。

YieldingWaitStrategy

        YieldingWaitStrategy是可以使用在低延迟系统的策略之一。YieldingWaitStrategy将自旋以等待序列增加到适当的值。在循环体内,将调用Thread.yield(),以允许其他排队的线程运行。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。

BusySpinWaitStrategy

       性能最好,适合用于低延迟的系统。在要求极高性能且事件处理线程数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。

PhasedBackoffWaitStrategy

      自旋 + yield + 自定义策略,CPU资源紧缺,吞吐量和延迟并不重要的场景。

写数据

单线程写数据的流程:

  1. 申请写入m个元素;
  2. 若是有m个元素可以入,则返回最大的序列号。这儿主要判断是否会覆盖未读的元素;
  3. 若是返回的正确,则生产者开始写入元素。

案列Demo实例:

在生产者与消费者模式中的经典使用:

依赖:

<dependencies>
   <dependency>
      <groupId>com.lmax</groupId>
      <artifactId>disruptor</artifactId>
      <version>3.2.1</version>
   </dependency>
</dependencies>

实现Event,EventFactory的类:

//定义事件event  通过Disruptor 进行交换的数据类型。
public class LongEvent {

    private Long value;

    public Long getValue() {
        return value;
    }

    public void setValue(Long value) {
        this.value = value;
    }

}
//需要Disruptor为我们创建Event,所以这里我们需要定义事件工厂,实现框架定义的接口
public class LongEventFactory implements EventFactory<LongEvent> {
    public LongEvent newInstance() {
        return new LongEvent();
    }
}

消费者跟生产者的实现:

//事件的消费者
public class LongEventHandler implements EventHandler<LongEvent>  {
    public void onEvent(LongEvent event, long sequence, boolean endOfBatch) throws Exception {
         System.out.println("消费者:"+event.getValue());
    }
}
//事件生产者
public class LongEventProducer {

    public final RingBuffer<LongEvent> ringBuffer;

    public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {
        this.ringBuffer = ringBuffer;
    }

    public void onData(ByteBuffer byteBuffer) {
        // 1.ringBuffer 事件队列 下一个槽
        long sequence = ringBuffer.next();
        Long data = null;
        try {
            //2.取出空的事件队列
            LongEvent longEvent = ringBuffer.get(sequence);
            data = byteBuffer.getLong(0);
            //3.获取事件队列传递的数据
            longEvent.setValue(data);
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        } finally {
            System.out.println("生产这准备发送数据");
            //4.发布事件
            ringBuffer.publish(sequence);
        }
    }
}

通过Main方法运行:

public class DisruptorMain {

    public static void main(String[] args) {
        // 1.创建一个可缓存的线程 提供线程来出发Consumer 的事件处理
        ExecutorService executor = Executors.newCachedThreadPool();
        // 2.创建工厂
        EventFactory<LongEvent> eventFactory = new LongEventFactory();
        // 3.创建ringBuffer 大小
        int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方
        // 4.创建Disruptor
        Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,
                ProducerType.SINGLE, new YieldingWaitStrategy());
        // 5.连接消费端方法
        disruptor.handleEventsWith(new LongEventHandler());
        // 6.启动
        disruptor.start();
        // 7.创建RingBuffer容器
        RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
        // 8.创建生产者
        LongEventProducer producer = new LongEventProducer(ringBuffer);
        // 9.指定缓冲区大小
        ByteBuffer byteBuffer = ByteBuffer.allocate(8);
        for (int i = 1; i <= 100; i++) {
            byteBuffer.putLong(0, i);
            producer.onData(byteBuffer);
        }
        //10.关闭disruptor和executor
        disruptor.shutdown();
        executor.shutdown();
    }

}

标签:Disruptor,无锁,浅谈,生产者,RingBuffer,线程,ringBuffer,public
来源: https://blog.csdn.net/weixin_46300935/article/details/120836731