其他分享
首页 > 其他分享> > 拓端tecdat|R语言矩阵特征值分解(谱分解)和奇异值分解(SVD)特征向量分析有价证券数据

拓端tecdat|R语言矩阵特征值分解(谱分解)和奇异值分解(SVD)特征向量分析有价证券数据

作者:互联网

原文链接:http://tecdat.cn/?p=23973

原文出处:拓端数据部落公众号

R语言是一门非常方便的数据分析语言,它内置了许多处理矩阵的方法。 

作为数据分析的一部分,我们要在有价证券矩阵的操作上做一些工作,只需几行代码。

有价证券数据矩阵在这里

  1.   ​
  2.    
  3.    
  4.   D=read.table("secur.txt",header=TRUE)
  5.   M=marix(D[,2:10])
  6.   head(M[,1:5])

谱分解

对角线化和光谱分析之间的联系可以从以下文字中看出

  1.   ​
  2.    
  3.    
  4.   > P=eigen(t(M)%*%M)$vectors
  5.   > P%*%diag(eigen(t(M)%*%M)$values)%*%t(P)
  6.    
  7.    
  8.   ​

首先是这个矩阵的谱分解与奇异值分解之间的联系

  1.   ​
  2.   > sqrt(eigen(t(M)%*%M)$values)

和其他矩阵乘积的谱分解

  1.   ​
  2.   > sqrt(eigen(M%*%t(M))$values)

现在,为了更好地理解寻找有价证券的成分,让我们考虑两个变量 

  1.    
  2.    
  3.   > sM=M[,c(1,3)]
  4.   > plot(sM)
  5.    

我们对变量标准化并减少变量(或改变度量)非常感兴趣

  1.    
  2.    
  3.   > sMcr=sM
  4.   > for(j in 1:2) sMcr[,j]=(sMcr[,j]-mean(sMcr[,j]))/sd(sMcr[,j])
  5.   > plot(sMcr)
  6.    

在对轴进行投影之前,先介绍两个函数

  1.   > pro_a=funcion(x,u
  2.   + ps=ep(NA,nrow(x))
  3.   + for(i i 1:nrow(x)) ps[i=sm(x[i*u)
  4.   + return(ps)
  5.   + }
  6.    
  7.   > prj=function(x,u){
  8.   + px=x
  9.   + for(j in 1:lngh(u)){
  10.   + px[,j]=pd_cal(xu)/srt(s(u^2))u[j]
  11.   + }
  12.   + return(px)
  13.   + }
  14.    

例如,如果我们在 x 轴上投影,

  1.   ​
  2.    
  3.    
  4.   > point(poj(scr,c(1,0))
  5.    
  6.    
  7.   ​

然后我们可以寻找轴的方向,这为我们提供具有最大惯性的点

  1.   > iner=function(x) sum(x^2)
  2.   > Thta=seq(0,3.492,length=01)
  3.   > V=unlslly(Theta,functinheta)ietie(roj(sMcrc(co(thet)sinheta)))
  4.   > plot(Theta,V,ype='l')
  5.    

  1.   ​
  2.    
  3.   > (ange=optim(0,fun(iothet) -ertieprojsMcrc(s(teta),
  4.   si(ta)))$ar)
  5.    
  6.    
  7.   ​

通过画图,我们得到

  1.    
  2.    
  3.   > plot(Mcr)

请注意,给出最大惯性的轴与谱分解的特征向量有关(与最大特征值相关的轴)。

  1.   >(cos(ngle),sin(ange))
  2.   [1] 0.7071 0.7070
  3.   > eigen(t(sMcr)%*%sMcr)

在开始主成分分析之前,我们需要操作数据矩阵,进行预测。


最受欢迎的见解

1.matlab偏最小二乘回归(PLSR)和主成分回归(PCR)

2.R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析

3.主成分分析(PCA)基本原理及分析实例

4.基于R语言实现LASSO回归分析

5.使用LASSO回归预测股票收益数据分析

6.r语言中对lasso回归,ridge岭回归和elastic-net模型

7.r语言中的偏最小二乘回归pls-da数据分析

8.r语言中的偏最小二乘pls回归算法

9.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)

标签:eigen,特征向量,SVD,sMcr,矩阵,分解,回归,语言
来源: https://www.cnblogs.com/tecdat/p/15416573.html