浅谈范数正则化
作者:互联网
<div id="page_begin_html">
<style>
back-top {
position: fixed;
bottom: 5px;
right: 10px;
z-index: 99;
}
back-top span {
width: 50px;
height: 64px;
display: block;
background:url(http://images.cnblogs.com/cnblogs_com/shwee/1218109/o_toTop.bmp) no-repeat center center;
}
back-top a{outline:none}
凯鲁嘎吉
用书写铭记日常,最迷人的不在远方 |
</div>
浅谈范数正则化
</div>
<div id="cnblogs_post_body" class="blogpost-body blogpost-body-html"><a rel="nofollow" name="_labelTop"></a><div id="navCategory"><p style="font-size:18px"><b>阅读目录(Content)</b></p><ul class="first_class_ul"><li><a rel="nofollow" href="#_label0">浅谈范数正则化</a></li><ul class="second_class_ul"><li><a rel="nofollow" href="#_lab2_0_0">1. 向量范数与矩阵范数</a></li><li><a rel="nofollow" href="#_lab2_0_1">2. 为什么要添加正则项?</a></li><li><a rel="nofollow" href="#_lab2_0_2">3. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>0</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-1" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.699em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="msubsup" id="MathJax-Span-3"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-4" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-5" style="font-size: 70.7%; font-family: MathJax_Main;">0</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.29em; border-left: 0px solid; width: 0px; height: 1.227em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>0</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-1">L_0</script>范数</a></li><li><a rel="nofollow" href="#_lab2_0_3">4. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-2-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-6" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-7"><span class="msubsup" id="MathJax-Span-8"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-9" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-10" style="font-size: 70.7%; font-family: MathJax_Main;">1</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-2">L_1</script>范数</a></li><li><a rel="nofollow" href="#_lab2_0_4">5. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-3-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-11" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-12"><span class="msubsup" id="MathJax-Span-13"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-14" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-15" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-3">L_2</script>范数</a></li><li><a rel="nofollow" href="#_lab2_0_5">6. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-4-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-16" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-17"><span class="msubsup" id="MathJax-Span-18"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-19" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-20" style="font-size: 70.7%; font-family: MathJax_Main;">1</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-4">L_1</script>范数与<span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-5-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-21" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-22"><span class="msubsup" id="MathJax-Span-23"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-24" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-25" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-5">L_2</script>范数作为正则项的区别</a></li><li><a rel="nofollow" href="#_lab2_0_6">7. 用概率解释传统线性回归模型</a></li><li><a rel="nofollow" href="#_lab2_0_7">8. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-6-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-26" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-27"><span class="msubsup" id="MathJax-Span-28"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-29" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-30" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-6">L_2</script>范等价于Gauss先验</a></li><li><a rel="nofollow" href="#_lab2_0_8">9. <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-7-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-31" style="width: 1.47em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.133em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.13em, 2.683em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-32"><span class="msubsup" id="MathJax-Span-33"><span style="display: inline-block; position: relative; width: 1.11em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-34" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="mn" id="MathJax-Span-35" style="font-size: 70.7%; font-family: MathJax_Main;">1</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.271em; border-left: 0px solid; width: 0px; height: 1.208em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math></span></span><script type="math/tex" id="MathJax-Element-7">L_1</script>范数等价于Laplace先验</a></li><li><a rel="nofollow" href="#_lab2_0_9">10. 矩阵的<span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-8-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mrow class="MJX-TeXAtom-ORD"><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-36" style="width: 2.137em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.667em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.67em, 2.821em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-37"><span class="msubsup" id="MathJax-Span-38"><span style="display: inline-block; position: relative; width: 1.66em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-39" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="texatom" id="MathJax-Span-40"><span class="mrow" id="MathJax-Span-41"><span class="mn" id="MathJax-Span-42" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span class="mo" id="MathJax-Span-43" style="font-size: 70.7%; font-family: MathJax_Main;">,</span><span class="mn" id="MathJax-Span-44" style="font-size: 70.7%; font-family: MathJax_Main;">1</span></span></span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.442em; border-left: 0px solid; width: 0px; height: 1.379em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mrow class="MJX-TeXAtom-ORD"><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span></span><script type="math/tex" id="MathJax-Element-8">L_{2, 1}</script>范数及<span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-9-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mrow class="MJX-TeXAtom-ORD"><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-45" style="width: 2.137em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.667em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.45em, 1001.67em, 2.821em, -1000em); top: -2.333em; left: 0em;"><span class="mrow" id="MathJax-Span-46"><span class="msubsup" id="MathJax-Span-47"><span style="display: inline-block; position: relative; width: 1.634em; height: 0px;"><span style="position: absolute; clip: rect(3.117em, 1000.65em, 4.2em, -1000em); top: -4em; left: 0em;"><span class="mi" id="MathJax-Span-48" style="font-family: MathJax_Math; font-style: italic;">L</span><span style="display: inline-block; width: 0px; height: 4em;"></span></span><span style="position: absolute; top: -3.85em; left: 0.681em;"><span class="texatom" id="MathJax-Span-49"><span class="mrow" id="MathJax-Span-50"><span class="mi" id="MathJax-Span-51" style="font-size: 70.7%; font-family: MathJax_Math; font-style: italic;">p</span><span class="mo" id="MathJax-Span-52" style="font-size: 70.7%; font-family: MathJax_Main;">,</span><span class="mi" id="MathJax-Span-53" style="font-size: 70.7%; font-family: MathJax_Math; font-style: italic;">q<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.01em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.333em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.442em; border-left: 0px solid; width: 0px; height: 1.379em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mrow class="MJX-TeXAtom-ORD"><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span></span><script type="math/tex" id="MathJax-Element-9">L_{p, q}</script>范数</a></li><li><a rel="nofollow" href="#_lab2_0_10">11. 矩阵的核范数及Schatten范数</a></li><li><a rel="nofollow" href="#_lab2_0_11">12. MATLAB程序:Laplace分布与Gauss分布的概率密度函数图</a></li><li><a rel="nofollow" href="#_lab2_0_12">13. 参考文献</a></li></ul></ul></div>
回到顶部(go to top)浅谈范数正则化
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
这篇博客介绍不同范数作为正则化项时的作用。首先介绍了常见的向量范数与矩阵范数,然后说明添加正则化项的原因,之后介绍向量的一类涉及矩阵范数的优化问题 - 凯鲁嘎吉 - 博客园
, , 范数及其作为正则化项的作用,对三者进行比较分析,并用贝叶斯观点解释传统线性模型与正则化项。随后,介绍矩阵的 范数及其推广形式 范数,以及矩阵的核范数及其推广形式Schatten范数。最后,用MATLAB程序编写了Laplace分布与Gauss分布的概率密度函数图。有关矩阵范数优化求解问题可参考:1. 向量范数与矩阵范数
2. 为什么要添加正则项?
3.
范数4.
范数5.
范数6.
范数与 范数作为正则项的区别7. 用概率解释传统线性回归模型
8.
范等价于Gauss先验9.
范数等价于Laplace先验10. 矩阵的
范数及 范数11. 矩阵的核范数及Schatten范数
12. MATLAB程序:Laplace分布与Gauss分布的概率密度函数图
?12345678910111213141516171819202122232425 | %% Demo of Laplace Density Function % x : variable % lambda : size para %miu: location para clear clc x = -10:0.1:10; y_1=Laplace_distribution(x, 0, 1); y_2=Laplace_distribution(x, 0, 2); y_3=Laplace_distribution(x, 0, 4); y_4=Laplace_distribution(x, -5, 4); y_5=Laplace_distribution(x, 5, 4); y_6=normpdf(x,0,1); plot (x, y_1, 'r-' , x, y_2, 'g-' , x, y_3, 'c-' , x, y_4, 'm-' , x, y_5, 'y-' , x, y_6, 'b-' , 'LineWidth' ,1.2); legend ( '\mu =0, \lambda=1' , '\mu=0, \lambda=2' , '\mu=0, \lambda=4' , '\mu=-5, \lambda=4' , '\mu=5, \lambda=4' , '\mu=0, \sigma=1' ); %图例的设置 xlabel ( 'x' ); ylabel ( 'f(x)' ); title ( 'Laplace vs Gauss pdf' ); set ( gca , 'FontName' , 'Times New Roman' , 'FontSize' ,11); saveas ( gcf , sprintf ( 'demo_Laplace_Gauss.jpg' ), 'bmp' ); %保存图片 %% Laplace Density Function function y=Laplace_distribution(x, miu, lambda) y = 1 / (2*lambda) * exp ( - abs (x-miu)/lambda); end |
13. 参考文献
[1] 证明核范数是矩阵秩的凸包络
EJ Candès, Recht B . Exact Matrix Completion via Convex Optimization[J]. Foundations of Computational Mathematics, 2009, 9(6):717.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.312.1183&rep=rep1&type=pdf
[2] 关于说明
范数是 范数的凸包络的文献及教案Donoho D L , Huo X . Uncertainty Principles and Ideal Atomic Decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862.
Learning with Combinatorial Structure Note for Lecture 12
http://people.csail.mit.edu/stefje/fall15/notes_lecture12.pdf
L1-norm Methods for Convex-Cardinality Problems
https://web.stanford.edu/class/ee364b/lectures/l1_slides.pdf
[3] 有关过拟合的教案及图片来源
2017 Lecture 2: Overfitting. Regularization
https://www.cs.mcgill.ca/~dprecup/courses/ML/Lectures/ml-lecture02.pdf
[4] 一些可供参考的资料
The difference between L1 and L2 regularization
https://explained.ai/regularization/L1vsL2.html
Why L1 norm for sparse models
https://stats.stackexchange.com/questions/45643/why-l1-norm-for-sparse-models
Why L1 regularization can “zero out the weights” and therefore leads to sparse models? [duplicate]
What are L1, L2 and Elastic Net Regularization in neural networks?
Introduction. Sharpness Enhancement and Denoising of Image Using L1-Norm Minimization Technique in Adaptive Bilateral Filter.
https://www.ijsr.net/archive/v3i11/T0NUMTQxMzUy.pdf
作者:凯鲁嘎吉 出处:http://www.cnblogs.com/kailugaji/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文链接,否则保留追究法律责任的权利。 分类: MATLAB作图 标签: 优化问题, 数值分析, MATLAB<div id="blog_post_info">
好文要顶
关注我
收藏该文
凯鲁嘎吉关注 - 10
粉丝 - 209 +加关注 0 0
<div class="clear"></div>
<div id="post_next_prev">
<a href="https://www.cnblogs.com/kailugaji/p/14613210.html" class="p_n_p_prefix">« </a> 上一篇: <a href="https://www.cnblogs.com/kailugaji/p/14613210.html" title="发布于 2021-04-03 10:14">一类涉及矩阵范数的优化问题</a>
<br>
<a href="https://www.cnblogs.com/kailugaji/p/14682575.html" class="p_n_p_prefix">» </a> 下一篇: <a href="https://www.cnblogs.com/kailugaji/p/14682575.html" title="发布于 2021-04-20 19:54">MATLAB数值实验:函数逼近法求方程的数值解</a>
posted on
2021-04-08 16:58
凯鲁嘎吉
阅读(531)
评论(0)
编辑
收藏
举报
刷新评论刷新页面返回顶部
发表评论
编辑
预览
f0ce0191-10df-476f-be07-08d7431a305b
自动补全
[Ctrl+Enter快捷键提交]
【推荐】并行超算云面向博客园粉丝推出“免费算力限时申领”特别活动【推荐】百度智能云超值优惠:新用户首购云服务器1核1G低至69元/年
【推荐】跨平台组态\工控\仿真\CAD 50万行C++源码全开放免费下载!
【推荐】和开发者在一起:华为开发者社区,入驻博客园科技品牌专区
编辑推荐:
· 理解ASP.NET Core - 选项(Options)
· 跳槽一年后的回顾
· 在 Unity 中渲染一个黑洞
· 理解 ASP.NET Core - 配置(Configuration)
· CSS 奇技淫巧 | 妙用 drop-shadow 实现线条光影效果
· Google Cloud现在将显示其用户在云中的碳足迹(2021-10-13 08:33)
· 微软称其抵挡了有史以来最大的DDoS攻击 带宽负载高达2.4Tbps(2021-10-13 08:25)
· OpenSilver将接替退休的微软Silverlight的工作(2021-10-13 08:16)
· 现代宇宙学模拟超大质量黑洞(SMBH)在宇宙中游荡(2021-10-13 08:08)
· Reddit聘请前Google云计算主管为其首位首席产品官(2021-10-13 08:01)
» 更多新闻...
—.—宅出新高度—.—
联系我: 2441040217@qq.com
Weibo: weibo.com/kailugaji
动态线条 动态线条end 昵称: 凯鲁嘎吉园龄: 5年
粉丝: 209
关注: 10 +加关注
搜索
</div>
</div>
常用链接
我的标签
</ul>
积分与排名
- 积分 - 372666
- 排名 - 1568
<h1 class="catListTitle">
随笔分类
(111)
</h1>
<ul class="catList">
<li class="catListItem" data-category-list-item-visible="true" style="display: block">
Deep Learning(21)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
Distributed Networks(7)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
MATLAB: Clustering Algorithms(25)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
MATLAB作图(27)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
Meta Learning(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
Reinforcement Learning(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
聚类算法简介(25)
</li> <li class="catListItem"><a href="javascript:void(0)" onclick="sideColumnManager.loadMore(this)">更多</a></li>
</ul>
<h1 class="catListTitle">
随笔档案
(245)
</h1>
<ul class="catList">
<li class="catListItem" data-category-list-item-visible="true" style="display: block">
2021年10月(2)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
2021年9月(7)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
2021年8月(10)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
2021年7月(3)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
2021年5月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2021年4月(4)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2021年3月(10)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2021年2月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2021年1月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年12月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年11月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年10月(6)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年9月(4)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年8月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年7月(5)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年6月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年5月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年4月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年3月(2)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年2月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2020年1月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年12月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年11月(13)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年10月(13)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年9月(6)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年8月(2)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年7月(4)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年6月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年5月(3)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年4月(11)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年3月(6)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年2月(4)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2019年1月(2)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年12月(14)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年11月(14)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年10月(2)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年9月(6)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年6月(1)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年5月(8)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年3月(14)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2018年1月(6)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2017年9月(9)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2017年6月(9)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2017年5月(5)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2016年11月(7)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2016年10月(2)
</li> <li class="catListItem" data-category-list-item-visible="false" style="display: none">
2016年9月(4)
</li> <li class="catListItem"><a href="javascript:void(0)" onclick="sideColumnManager.loadMore(this)">更多</a></li>
</ul>
<h1 class="catListTitle">
文章档案
(2)
</h1>
<ul class="catList">
<li class="catListItem" data-category-list-item-visible="true" style="display: block">
2019年9月(1)
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
2019年2月(1)
</li>
</ul>
<h1 class="catListTitle">
我的其他博客
</h1>
<ul class="catList">
<li class="catListItem" data-category-list-item-visible="true" style="display: block">
凯鲁嘎吉的微博
</li> <li class="catListItem" data-category-list-item-visible="true" style="display: block">
GitHub-kailugaji
</li>
</ul>
阅读排行榜
- 1. MATLAB用二分法、不动点迭代法及Newton迭代(切线)法求非线性方程的根(27996)
- 2. MATLAB实例:多元函数拟合(线性与非线性)(25485)
- 3. Java用户名登录学生信息管理系统并对其进行增删改查操作(19910)
- 4. MATLAB实例:PCA(主成成分分析)详解(17269)
- 5. MATLAB三维作图——隐函数(14819)
评论排行榜
- 1. BrainWeb: Simulated Brain Database使用说明(41)
- 2. MATLAB程序:用FCM分割脑图像(29)
- 3. GMM算法的matlab程序(17)
- 4. ISODATA聚类算法的matlab程序(15)
- 5. 密度峰值聚类算法MATLAB程序(14)
推荐排行榜
- 1. 博客园美化(20)
- 2. 密度峰值聚类算法MATLAB程序(5)
- 3. 密度峰值聚类算法(DPC)(5)
- 4. Java用户名登录学生信息管理系统并对其进行增删改查操作(4)
- 5. 交替方向乘子法(ADMM)(3)
最新评论
- 1. Re:MATLAB实例:构造网络连接图(Network Connection)及计算图的代数连通度(Algebraic Connectivity)
- @我住隔壁不姓王 那只能控制节点位置的随机性了,尽量放置节点时让其方差小一点,紧凑一点。或者尽可能均匀分布在区域内。...
- 2. Re:MATLAB实例:构造网络连接图(Network Connection)及计算图的代数连通度(Algebraic Connectivity)
- @凯鲁嘎吉 谢谢回复,但是这个不稳定啊,还是会存在所有节点不连接的情况 我想实现在规定区域内和规定的通信距离,将放置的所有节点连接起来(保证一个节点能连接两个节点),不会存在孤点的情况 ,只需要构造网...
- 3. Re:MATLAB实例:构造网络连接图(Network Connection)及计算图的代数连通度(Algebraic Connectivity)
- @我住隔壁不姓王 增大通信距离或缩小区域面积 Conf.Square = 3.5; %方形区域的边长 Conf.CommDist = 0.8; %最大通信距离 调这两个参数...
- 4. Re:MATLAB实例:构造网络连接图(Network Connection)及计算图的代数连通度(Algebraic Connectivity)
请问如何将孤点也连接起来呢(或者只需要保证每个节点能连接起来也可以)
- 5. Re:MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据)
- @我是皇小楠 把概率密度这一列当做数据data...
Powered by .NET 6 on Kubernetes Powered By博客园
<div id="page_end_html">
<script>(function(T,h,i,n,k,P,a,g,e){g=function(){P=h.createElement(i);a=h.getElementsByTagName(i)[0];P.src=k;P.charset="utf-8";P.async=1;a.parentNode.insertBefore(P,a)};T["ThinkPageWeatherWidgetObject"]=n;T[n]||(T[n]=function(){(T[n].q=T[n].q||[]).push(arguments)});T[n].l=+new Date();if(T.attachEvent){T.attachEvent("onload",g)}else{T.addEventListener("load",g,false)}}(window,document,"script","tpwidget","//widget.seniverse.com/widget/chameleon.js"))</script>
<input type="hidden" id="antiforgery_token" value="CfDJ8FO3GXnjClZGrNGr2Ic8Z1qpRZD0rt1_jnxLR58Zdr9yaz3DSUkQIc6gWcE7xdcR78VyDMTSVu4vjQ8kdD7maER52PVR5ccStTOyrpVxxA0ZrKNyyThJsUFTszjvHWo4B2qiF6avlKdxdlLKEuCGHzdCIHDLahVNbc3YbHK-NzTtr8qq_pESi1e-LZ7WIpW3wg">
标签:10,浅谈,正则,2019,2021,范数,Laplace,MATLAB 来源: https://www.cnblogs.com/lucas0730/p/15400626.html