其他分享
首页 > 其他分享> > 【笔记】pytorch 中学习率调整函数 : torch.optim.lr_scheduler 。。。

【笔记】pytorch 中学习率调整函数 : torch.optim.lr_scheduler 。。。

作者:互联网

附:

https://www.cnblogs.com/wanghui-garcia/p/10895397.html

注1:

注2:

 注3:

正文:

 

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

 

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)
        self.conv2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()
net_2 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
print("******************optimizer_1*********************")
print("optimizer_1.defaults:", optimizer_1.defaults)
print("optimizer_1.param_groups长度:", len(optimizer_1.param_groups))
print("optimizer_1.param_groups一个元素包含的键:", optimizer_1.param_groups[0].keys())
print()

optimizer_2 = torch.optim.Adam([*net_1.parameters(), *net_2.parameters()], lr = initial_lr)
# optimizer_2 = torch.opotim.Adam(itertools.chain(net_1.parameters(), net_2.parameters())) # 和上一行作用相同
print("******************optimizer_2*********************")
print("optimizer_2.defaults:", optimizer_2.defaults)
print("optimizer_2.param_groups长度:", len(optimizer_2.param_groups))
print("optimizer_2.param_groups一个元素包含的键:", optimizer_2.param_groups[0].keys())
print()

optimizer_3 = torch.optim.Adam([{"params": net_1.parameters()}, {"params": net_2.parameters()}], lr = initial_lr)
print("******************optimizer_3*********************")
print("optimizer_3.defaults:", optimizer_3.defaults)
print("optimizer_3.param_groups长度:", len(optimizer_3.param_groups))
print("optimizer_3.param_groups一个元素包含的键:", optimizer_3.param_groups[0].keys())

 输出为:

******************optimizer_1*********************
optimizer_1.defaults: {'lr': 0.1, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False}
optimizer_1.param_groups长度: 1
optimizer_1.param_groups一个元素包含的键: dict_keys(['params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad'])

******************optimizer_2*********************
optimizer_2.defaults: {'lr': 0.1, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False}
optimizer_2.param_groups长度: 1
optimizer_2.param_groups一个元素包含的键: dict_keys(['params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad'])

******************optimizer_3*********************
optimizer_3.defaults: {'lr': 0.1, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False}
optimizer_3.param_groups长度: 2
optimizer_3.param_groups一个元素包含的键: dict_keys(['params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad'])

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR

initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = LambdaLR(optimizer_1, lr_lambda=lambda epoch: 1/(epoch+1))

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()

 输出:

初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.050000
第3个epoch的学习率:0.033333
第4个epoch的学习率:0.025000
第5个epoch的学习率:0.020000
第6个epoch的学习率:0.016667
第7个epoch的学习率:0.014286
第8个epoch的学习率:0.012500
第9个epoch的学习率:0.011111
第10个epoch的学习率:0.010000

补充:
cycleGAN中使用torch.optim.lr_scheduler.LambdaLR实现了前niter个epoch用initial_lr为学习率,之后的niter_decay个epoch线性衰减lr,直到最后一个epoch衰减为0。详情参考:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py 的第52~55行。

 下面举例说明:

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = StepLR(optimizer_1, step_size=3, gamma=0.1)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()

 

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import MultiStepLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = MultiStepLR(optimizer_1, milestones=[3, 7], gamma=0.1)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()

 输出为:

初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.100000
第3个epoch的学习率:0.100000
第4个epoch的学习率:0.010000
第5个epoch的学习率:0.010000
第6个epoch的学习率:0.010000
第7个epoch的学习率:0.010000
第8个epoch的学习率:0.001000
第9个epoch的学习率:0.001000
第10个epoch的学习率:0.001000

 

 

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ExponentialLR
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = ExponentialLR(optimizer_1, gamma=0.1)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 11):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step()
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.010000
第3个epoch的学习率:0.001000
第4个epoch的学习率:0.000100
第5个epoch的学习率:0.000010
第6个epoch的学习率:0.000001
第7个epoch的学习率:0.000000
第8个epoch的学习率:0.000000
第9个epoch的学习率:0.000000
第10个epoch的学习率:0.000000

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import CosineAnnealingLR
import itertools

import matplotlib.pyplot as plt


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = CosineAnnealingLR(optimizer_1, T_max=20)

print("初始化的学习率:", optimizer_1.defaults['lr'])

lr_list = [] # 把使用过的lr都保存下来,之后画出它的变化

for epoch in range(1, 101):
    # train

    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    lr_list.append(optimizer_1.param_groups[0]['lr'])
    scheduler_1.step()

# 画出lr的变化
plt.plot(list(range(1, 101)), lr_list)
plt.xlabel("epoch")
plt.ylabel("lr")
plt.title("learning rate's curve changes as epoch goes on!")
plt.show()

 

 下面举例说明:

import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
import itertools


initial_lr = 0.1

class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)

    def forward(self, x):
        pass

net_1 = model()

optimizer_1 = torch.optim.Adam(net_1.parameters(), lr = initial_lr)
scheduler_1 = ReduceLROnPlateau(optimizer_1, mode='min', factor=0.1, patience=2)

print("初始化的学习率:", optimizer_1.defaults['lr'])

for epoch in range(1, 15):
    # train

    test = 2
    optimizer_1.zero_grad()
    optimizer_1.step()
    print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr']))
    scheduler_1.step(test)
初始化的学习率: 0.1
第1个epoch的学习率:0.100000
第2个epoch的学习率:0.100000
第3个epoch的学习率:0.100000
第4个epoch的学习率:0.100000
第5个epoch的学习率:0.010000
第6个epoch的学习率:0.010000
第7个epoch的学习率:0.010000
第8个epoch的学习率:0.001000
第9个epoch的学习率:0.001000
第10个epoch的学习率:0.001000
第11个epoch的学习率:0.000100
第12个epoch的学习率:0.000100
第13个epoch的学习率:0.000100
第14个epoch的学习率:0.000010

标签:optimizer,nn,optim,torch,epoch,学习,pytorch,lr
来源: https://blog.csdn.net/nyist_yangguang/article/details/120732971