其他分享
首页 > 其他分享> > Pandas数据分析----缺失值统计与分析

Pandas数据分析----缺失值统计与分析

作者:互联网

工具包导入

(9月29号(组内)–数据分析)

import pandas as pd
print(pd.__version__)
1.2.4

数据载入

data1 = pd.read_csv('./datasets1/location_object.csv')
print(data1.head(5))
             TIME  K1-1  K1-2  K1-3  K1-4  K1-5  K1-6  K2-1  K2-2  K2-3  ...  \
0  2020/7/19 0:00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...   
1  2020/7/19 1:00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...   
2  2020/7/19 2:00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...   
3  2020/7/19 3:00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...   
4  2020/7/19 4:00   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...   

   K4-5  K4-6  K4-7  K4-8  K5-1  K5-2  K5-3  K5-4  K5-5  K5-6  
0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
1   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
2   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
3   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  
4   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN  

[5 rows x 39 columns]

数据概览

data1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 624 entries, 0 to 623
Data columns (total 39 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   TIME    624 non-null    object 
 1   K1-1    81 non-null     float64
 2   K1-2    43 non-null     float64
 3   K1-3    74 non-null     float64
 4   K1-4    43 non-null     float64
 5   K1-5    66 non-null     float64
 6   K1-6    19 non-null     float64
 7   K2-1    31 non-null     float64
 8   K2-2    34 non-null     float64
 9   K2-3    130 non-null    float64
 10  K2-4    119 non-null    float64
 11  K2-5    77 non-null     float64
 12  K2-6    105 non-null    float64
 13  K2-7    59 non-null     float64
 14  K2-8    24 non-null     float64
 15  K3-1-1  49 non-null     float64
 16  K3-1-2  22 non-null     float64
 17  K3-2    91 non-null     float64
 18  K3-3    78 non-null     float64
 19  K3-4    85 non-null     float64
 20  K3-5    102 non-null    float64
 21  K3-6    79 non-null     float64
 22  K3-7    90 non-null     float64
 23  K3-8-1  15 non-null     float64
 24  K3-8-2  13 non-null     float64
 25  K4-1    47 non-null     float64
 26  K4-2    63 non-null     float64
 27  K4-3    128 non-null    float64
 28  K4-4    61 non-null     float64
 29  K4-5    58 non-null     float64
 30  K4-6    96 non-null     float64
 31  K4-7    28 non-null     float64
 32  K4-8    41 non-null     float64
 33  K5-1    54 non-null     float64
 34  K5-2    72 non-null     float64
 35  K5-3    65 non-null     float64
 36  K5-4    51 non-null     float64
 37  K5-5    68 non-null     float64
 38  K5-6    30 non-null     float64
dtypes: float64(38), object(1)
memory usage: 190.2+ KB
# 数据统计描述
data1.describe()
K1-1K1-2K1-3K1-4K1-5K1-6K2-1K2-2K2-3K2-4...K4-5K4-6K4-7K4-8K5-1K5-2K5-3K5-4K5-5K5-6
count81.043.074.043.066.019.031.034.0130.0119.0...58.096.028.041.054.072.065.051.068.030.0
mean1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0
25%1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0
50%1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0
75%1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0
max1.01.01.01.01.01.01.01.01.01.0...1.01.01.01.01.01.01.01.01.01.0

8 rows × 38 columns

缺失值统计

# 缺失值可视化
import missingno as msn
msn.matrix(data1)
<matplotlib.axes._subplots.AxesSubplot at 0x268bd314a08>

在这里插入图片描述

统计每一列的缺失值个数

# 非空值统计,求取每个列的非空值个数
print(data1.count())
TIME      624
K1-1       81
K1-2       43
K1-3       74
K1-4       43
K1-5       66
K1-6       19
K2-1       31
K2-2       34
K2-3      130
K2-4      119
K2-5       77
K2-6      105
K2-7       59
K2-8       24
K3-1-1     49
K3-1-2     22
K3-2       91
K3-3       78
K3-4       85
K3-5      102
K3-6       79
K3-7       90
K3-8-1     15
K3-8-2     13
K4-1       47
K4-2       63
K4-3      128
K4-4       61
K4-5       58
K4-6       96
K4-7       28
K4-8       41
K5-1       54
K5-2       72
K5-3       65
K5-4       51
K5-5       68
K5-6       30
dtype: int64
# 上述统计形式等价于
print(data1.count(axis=0))
TIME      624
K1-1       81
K1-2       43
K1-3       74
K1-4       43
K1-5       66
K1-6       19
K2-1       31
K2-2       34
K2-3      130
K2-4      119
K2-5       77
K2-6      105
K2-7       59
K2-8       24
K3-1-1     49
K3-1-2     22
K3-2       91
K3-3       78
K3-4       85
K3-5      102
K3-6       79
K3-7       90
K3-8-1     15
K3-8-2     13
K4-1       47
K4-2       63
K4-3      128
K4-4       61
K4-5       58
K4-6       96
K4-7       28
K4-8       41
K5-1       54
K5-2       72
K5-3       65
K5-4       51
K5-5       68
K5-6       30
dtype: int64

统计某一列的缺失值个数

print(data1[['K5-6']].count())
K5-6    30
dtype: int64

统计多个列的缺失值个数

print(data1[['K5-6', 'K5-5']].count())
K5-6    30
K5-5    68
dtype: int64

统计每一行的缺失值个数

# 求取每一行的缺失值个数
print(data1.count(axis=1))
0      1
1      1
2      2
3      2
4      1
      ..
619    1
620    1
621    1
622    1
623    1
Length: 624, dtype: int64

统计某一行的缺失值个数

print(data1.iloc[[0]].count())
1

统计多行的缺失值个数

print(data1.iloc[[0, 1]].count())
TIME      2
K1-1      0
K1-2      0
K1-3      0
K1-4      0
K1-5      0
K1-6      0
K2-1      0
K2-2      0
K2-3      0
K2-4      0
K2-5      0
K2-6      0
K2-7      0
K2-8      0
K3-1-1    0
K3-1-2    0
K3-2      0
K3-3      0
K3-4      0
K3-5      0
K3-6      0
K3-7      0
K3-8-1    0
K3-8-2    0
K4-1      0
K4-2      0
K4-3      0
K4-4      0
K4-5      0
K4-6      0
K4-7      0
K4-8      0
K5-1      0
K5-2      0
K5-3      0
K5-4      0
K5-5      0
K5-6      0
dtype: int64

对每一列进行求和

print(data1.sum())
TIME      2020/7/19 0:002020/7/19 1:002020/7/19 2:002020...
K1-1                                                   81.0
K1-2                                                   43.0
K1-3                                                   74.0
K1-4                                                   43.0
K1-5                                                   66.0
K1-6                                                   19.0
K2-1                                                   31.0
K2-2                                                   34.0
K2-3                                                  130.0
K2-4                                                  119.0
K2-5                                                   77.0
K2-6                                                  105.0
K2-7                                                   59.0
K2-8                                                   24.0
K3-1-1                                                 49.0
K3-1-2                                                 22.0
K3-2                                                   91.0
K3-3                                                   78.0
K3-4                                                   85.0
K3-5                                                  102.0
K3-6                                                   79.0
K3-7                                                   90.0
K3-8-1                                                 15.0
K3-8-2                                                 13.0
K4-1                                                   47.0
K4-2                                                   63.0
K4-3                                                  128.0
K4-4                                                   61.0
K4-5                                                   58.0
K4-6                                                   96.0
K4-7                                                   28.0
K4-8                                                   41.0
K5-1                                                   54.0
K5-2                                                   72.0
K5-3                                                   65.0
K5-4                                                   51.0
K5-5                                                   68.0
K5-6                                                   30.0
dtype: object

对每一行进行求和

print(data1.sum(axis=1))
0      0.0
1      0.0
2      1.0
3      1.0
4      0.0
      ... 
619    0.0
620    0.0
621    0.0
622    0.0
623    0.0
Length: 624, dtype: float64

对单独的一行或一列进行操作

# 对某一列进行求和
print(data1['K5-6'].sum())
30.0
# 对某一行进行求和
print(data1.iloc[[0]].sum())
TIME      2020/7/19 0:00
K1-1                 0.0
K1-2                 0.0
K1-3                 0.0
K1-4                 0.0
K1-5                 0.0
K1-6                 0.0
K2-1                 0.0
K2-2                 0.0
K2-3                 0.0
K2-4                 0.0
K2-5                 0.0
K2-6                 0.0
K2-7                 0.0
K2-8                 0.0
K3-1-1               0.0
K3-1-2               0.0
K3-2                 0.0
K3-3                 0.0
K3-4                 0.0
K3-5                 0.0
K3-6                 0.0
K3-7                 0.0
K3-8-1               0.0
K3-8-2               0.0
K4-1                 0.0
K4-2                 0.0
K4-3                 0.0
K4-4                 0.0
K4-5                 0.0
K4-6                 0.0
K4-7                 0.0
K4-8                 0.0
K5-1                 0.0
K5-2                 0.0
K5-3                 0.0
K5-4                 0.0
K5-5                 0.0
K5-6                 0.0
dtype: object

对多个行或多个列进行操作

# 对多个列求和
print(data1[['K5-6', 'K5-5']].sum())
K5-6    30.0
K5-5    68.0
dtype: float64
# 对多行进行求和
print(data1.iloc[[0, 1]].sum())
TIME      2020/7/19 0:002020/7/19 1:00
K1-1                               0.0
K1-2                               0.0
K1-3                               0.0
K1-4                               0.0
K1-5                               0.0
K1-6                               0.0
K2-1                               0.0
K2-2                               0.0
K2-3                               0.0
K2-4                               0.0
K2-5                               0.0
K2-6                               0.0
K2-7                               0.0
K2-8                               0.0
K3-1-1                             0.0
K3-1-2                             0.0
K3-2                               0.0
K3-3                               0.0
K3-4                               0.0
K3-5                               0.0
K3-6                               0.0
K3-7                               0.0
K3-8-1                             0.0
K3-8-2                             0.0
K4-1                               0.0
K4-2                               0.0
K4-3                               0.0
K4-4                               0.0
K4-5                               0.0
K4-6                               0.0
K4-7                               0.0
K4-8                               0.0
K5-1                               0.0
K5-2                               0.0
K5-3                               0.0
K5-4                               0.0
K5-5                               0.0
K5-6                               0.0
dtype: object

可视化分析

import matplotlib.pyplot as plt

plt.figure(figsize=(24, 7))
plt.rcParams['font.family'] = 'SimHei'

plt.bar(data1.columns, list(data1.count(axis=0)), width=1.5)
plt.title('非空值个数统计')

plt.show()

在这里插入图片描述

import plotly as py
import plotly.graph_objs as go
pyplt = py.offline.plot
# Trace
trace_basic = [go.Bar(
            x = data1.columns,
            y = list(data1.count(axis=0)),
    )]
# Layout
layout_basic = go.Layout(
            title = '非空值个数统计')
# Figure
figure_basic = go.Figure(data = trace_basic, layout = layout_basic)
# Plot
pyplt(figure_basic, filename='./1.html')
'./1.html'

在这里插入图片描述

标签:数据分析,K3,0.0,NaN,----,K2,K5,K4,Pandas
来源: https://blog.csdn.net/AIHUBEI/article/details/120556955