其他分享
首页 > 其他分享> > PCL点云库调库学习系列——k-d tree与八叉树

PCL点云库调库学习系列——k-d tree与八叉树

作者:互联网

k-d tree与八叉树

1 k-d tree与八叉树

本文并不涉及具体原理的解释,文章着重在k-d树与八叉树在近邻搜索方面的API的使用

1.1 k-d tree

k-d tree算法及原理: https://www.cnblogs.com/flyinggod/p/8727584.html

实现功能

关键API

//k近邻搜索
int pcl::search::KdTree< PointT, Tree >::nearestKSearch (
    const PointT &point, 				//搜索点
    int k, 								//搜索个数	
    std::vector<int> &k_indices, 		//保存近邻的索引值
    std::vector<float> &k_distances 	//保存近邻的平方距离
)const

//半径radius内近邻搜索
int pcl::search::KdTree< PointT, Tree >::radiusSearch (
    const PointT &point, 				//搜索点
    double radius, 					//搜索半径
    std::vector<int> &k_indices, 		//保存近邻的索引值
    std::vector<float> &k_sqr_dists, 	//保存近邻的平方距离
    unsigned int max_nn				//默认值0,如果给定一个数值,则将返回近邻的最大值限制在这个数值以下(包括该数值),如果给0或者高于输入点云中的个数,则返回半径中的所有近邻
)const

完整代码

    #include <pcl/point_cloud.h>
    #include <pcl/kdtree/kdtree_flann.h>
    
    #include <iostream>
    #include <vector>
    #include <ctime>
    
    int
    main(int argc, char** argv)
    {
        srand(time(NULL));  //初始化随机数种子
    
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    
        // Generate pointcloud data
        //随机点云生成
        cloud->width = 1000;    //点云数量 
        cloud->height = 1;      //无序点云
        cloud->points.resize(cloud->width * cloud->height);
    
        for (std::size_t i = 0; i < cloud->points.size(); ++i)  //循环填充点云数据
        {
            cloud->points[i].x = 1024.0f * rand() / (RAND_MAX + 1.0f);
            cloud->points[i].y = 1024.0f * rand() / (RAND_MAX + 1.0f);
            cloud->points[i].z = 1024.0f * rand() / (RAND_MAX + 1.0f);
        }
    
        pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;     //创建KdTreeFLANN对象
    
        kdtree.setInputCloud(cloud);                //设置被搜索的点云
    
        pcl::PointXYZ searchPoint;                  //定义搜索点
    
        searchPoint.x = 1024.0f * rand() / (RAND_MAX + 1.0f);
        searchPoint.y = 1024.0f * rand() / (RAND_MAX + 1.0f);
        searchPoint.z = 1024.0f * rand() / (RAND_MAX + 1.0f);
    
        // K nearest neighbor search
        /*--------------k近邻搜索----------------------*/
    
        //近邻个数
        int K = 10;
    
        //这两个向量用来分别存储近邻的索引值、近邻的中心距
        std::vector<int> pointIdxNKNSearch(K);
        std::vector<float> pointNKNSquaredDistance(K);
    
        std::cout << "K nearest neighbor search at (" << searchPoint.x
            << " " << searchPoint.y
            << " " << searchPoint.z
            << ") with K=" << K << std::endl;
        
        //核心函数nearestKSearch(),第三个参数的类型为pcl::Indices,进一步参看该类型可以发现为vector<int>,这也就是为什么前面pointIdxNKNSearch的类型声明为vector<int>
        if (kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
        {
            for (std::size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
                std::cout << "    " << cloud->points[pointIdxNKNSearch[i]].x
                << " " << cloud->points[pointIdxNKNSearch[i]].y
                << " " << cloud->points[pointIdxNKNSearch[i]].z
                << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
        }
    
        // Neighbors within radius search
        /*--------------在半径范围内搜索所有近邻点----------------------*/
    
        //这两个向量用来分别存储近邻的索引值、近邻的平方距离
        std::vector<int> pointIdxRadiusSearch;
        std::vector<float> pointRadiusSquaredDistance;
    
        //指定随机半径
        float radius = 256.0f * rand() / (RAND_MAX + 1.0f);
    
        std::cout << "Neighbors within radius search at (" << searchPoint.x
            << " " << searchPoint.y
            << " " << searchPoint.z
            << ") with radius=" << radius << std::endl;
    
        //radiusSearch最后一个参数,用于限制满足近邻条件后的结果的个数,默认值为0,代表全部输出
        if (kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance, 3) > 0)
        {
            for (std::size_t i = 0; i < pointIdxRadiusSearch.size(); ++i)
                std::cout << "    " << cloud->points[pointIdxRadiusSearch[i]].x
                << " " << cloud->points[pointIdxRadiusSearch[i]].y
                << " " << cloud->points[pointIdxRadiusSearch[i]].z
                << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
        }
    
    
        return 0;
    }

运行结果

//k近邻搜索结果
K nearest neighbor search at (443.625 766.75 839.094) with K=10
    450.813 818.625 869.688 (squared distance: 3678.65)
    449.688 737.063 784.75 (squared distance: 3871.34)
    445.344 825.344 864.063 (squared distance: 4059.62)
    497.906 737.563 874.625 (squared distance: 5060.83)
    392.219 728.281 870.125 (squared distance: 5085.39)
    437.094 762.938 766.313 (squared distance: 5354.3)
    463.188 814.344 780.063 (squared distance: 6132.54)
    441.531 791.875 745.313 (squared distance: 9430.57)
    465.75 811.781 754.781 (squared distance: 9625.93)
    491.125 677.094 821 (squared distance: 10621.9)

//指定半径内的搜索结果
Neighbors within radius search at (443.625 766.75 839.094) with radius=130.57
    450.813 818.625 869.688 (squared distance: 3678.65)
    449.688 737.063 784.75 (squared distance: 3871.34)
    445.344 825.344 864.063 (squared distance: 4059.62)
    497.906 737.563 874.625 (squared distance: 5060.83)
    392.219 728.281 870.125 (squared distance: 5085.39)
    437.094 762.938 766.313 (squared distance: 5354.3)
    463.188 814.344 780.063 (squared distance: 6132.54)
    441.531 791.875 745.313 (squared distance: 9430.57)
    465.75 811.781 754.781 (squared distance: 9625.93)
    491.125 677.094 821 (squared distance: 10621.9)
    395.406 670.344 847.875 (squared distance: 11696.3)
    513.594 749.344 930.344 (squared distance: 13525.2)
    447.656 660.813 898.438 (squared distance: 14760.7)
    449.969 763.281 961.281 (squared distance: 14982.1)
    419.344 869.75 776.75 (squared distance: 15085.3)
    380.563 866.75 886.688 (squared distance: 16242)
    492.063 684.906 925.594 (squared distance: 16526.8)
   	//结果是由小到大依次排列

对最大的距离进行验证发现

对16526开平方==128 < 130.57 可以判断所得到的结果都是在规定的搜索半径内的

1.2 八叉树

八叉树相关解释见:https://blog.csdn.net/qq_37855507/article/details/90957798

实现功能

学习使用八叉树在点云数据中进行近邻搜索

  • 体素内近邻搜索
  • K近邻搜索
  • 半径内近邻搜搜

关键API

//[in]表示输入参数, [out]表示输出参数
bool pcl::octree::OctreePointCloudSearch< PointT, LeafContainerT, BranchContainerT >::voxelSearch(
    const PointT& point,  				//[in]搜索点
    std::vector<int>& point_idx_data  	//[out]搜索到的近邻带你索引
) 

//k近邻搜索
int pcl::search::Octree< PointT, LeafTWrap, BranchTWrap, OctreeT >::nearestKSearch(
    const PointT& point,  			//[in]搜索点
    int k,  						//[in]近邻点个数
    std::vector<int>& k_indices,  	//[out]搜索到的近邻带你索引
    std::vector<float>& k_sqr_distances  //[out]搜索到的紧邻点的平方距离
)const 


//半径搜搜
int pcl::search::Octree< PointT, LeafTWrap, BranchTWrap, OctreeT >::radiusSearch(
    const PointT& p_q,  			//[in]搜索点
    double radius,  				//[in]搜索半径
    std::vector<int>& k_indices,  	//[out]搜索到的近邻带你索引
    std::vector<float>& k_sqr_distances,  //[out]搜索到的紧邻点的平方距离
    unsigned int max_nn = 0  		//[in]用来限制找到的结果的最大个数,默认为0,即报错所有结果
)const 

完整代码

#include <pcl/point_cloud.h>
#include <pcl/octree/octree_search.h>

#include <iostream>
#include <vector>
#include <ctime>

int
main(int argc, char** argv)
{
    srand((unsigned int)time(NULL));

    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

    // Generate pointcloud data
    cloud->width = 1000;
    cloud->height = 1;
    cloud->points.resize(cloud->width * cloud->height);

    for (std::size_t i = 0; i < cloud->points.size(); ++i)
    {
        cloud->points[i].x = 1024.0f * rand() / (RAND_MAX + 1.0f);
        cloud->points[i].y = 1024.0f * rand() / (RAND_MAX + 1.0f);
        cloud->points[i].z = 1024.0f * rand() / (RAND_MAX + 1.0f);
    }

    float resolution = 256.0f;  //八叉树的分辨率参数,用来描述最低一级八叉树的最小体素的尺寸

    pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree(resolution);  //初始化八叉树

    octree.setInputCloud(cloud);        //设置输入点云
    octree.addPointsFromInputCloud();   //构建八叉树

    pcl::PointXYZ searchPoint;

    searchPoint.x = 1024.0f * rand() / (RAND_MAX + 1.0f);
    searchPoint.y = 1024.0f * rand() / (RAND_MAX + 1.0f);
    searchPoint.z = 1024.0f * rand() / (RAND_MAX + 1.0f);

    // Neighbors within voxel search
    //体素内近邻搜索
    std::vector<int> pointIdxVec;       //用于保存体素近邻搜索的结果向量

    if (octree.voxelSearch(searchPoint, pointIdxVec))
    {
        std::cout << "Neighbors within voxel search at (" << searchPoint.x
            << " " << searchPoint.y
            << " " << searchPoint.z << ")"
            << std::endl;

        for (std::size_t i = 0; i < pointIdxVec.size(); ++i)
            std::cout << "    " << cloud->points[pointIdxVec[i]].x
            << " " << cloud->points[pointIdxVec[i]].y
            << " " << cloud->points[pointIdxVec[i]].z << std::endl;
    }

    // K nearest neighbor search
    //K近邻搜索
    int K = 10;

    std::vector<int> pointIdxNKNSearch;             //存储k近邻搜索点的索引结果         
    std::vector<float> pointNKNSquaredDistance;     //存储k近邻搜索的平方距离

    std::cout << "K nearest neighbor search at (" << searchPoint.x
        << " " << searchPoint.y
        << " " << searchPoint.z
        << ") with K=" << K << std::endl;

    if (octree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
    {
        for (std::size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
            std::cout << "    " << cloud->points[pointIdxNKNSearch[i]].x
            << " " << cloud->points[pointIdxNKNSearch[i]].y
            << " " << cloud->points[pointIdxNKNSearch[i]].z
            << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
    }

    // Neighbors within radius search
    //半径内近邻搜索
    std::vector<int> pointIdxRadiusSearch;              //存储半径近邻搜索点的索引结果         
    std::vector<float> pointRadiusSquaredDistance;      //存储半径近邻搜索的平方距离    

    float radius = 256.0f * rand() / (RAND_MAX + 1.0f);

    std::cout << "Neighbors within radius search at (" << searchPoint.x
        << " " << searchPoint.y
        << " " << searchPoint.z
        << ") with radius=" << radius << std::endl;


    if (octree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
    {
        for (std::size_t i = 0; i < pointIdxRadiusSearch.size(); ++i)
            std::cout << "    " << cloud->points[pointIdxRadiusSearch[i]].x
            << " " << cloud->points[pointIdxRadiusSearch[i]].y
            << " " << cloud->points[pointIdxRadiusSearch[i]].z
            << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
    }
}
   

运行结果

在这里插入图片描述

在指定的半径内没有搜索到满足条件的点

标签:std,distance,tree,八叉树,squared,points,PCL,近邻,cloud
来源: https://blog.csdn.net/m0_46376148/article/details/120398816