数据结构练习--斐波那契数列的四种写法
作者:互联网
package DP;
public class Fibonacci {
/**
* 斐波那契数列初级
* @param n
* @return
*/
public int RecursiveFibonacci(int n){
if(n==0){
return 0;
}
if(n==1){
return 1;
}
return RecursiveFibonacci(n-1)+RecursiveFibonacci(n-2);
}
/**
* 升级版
*/
public int fibNacci0(int n){
int[] tong=new int[n];
if(n == 0||n==1){
return 1;
}
tong[0]=1;
tong[1]=1;
for(int i = 2;i<n;i++){
tong[i]=tong[i-1]+tong[i+1];
}
return tong[n-1];
}
/**
* 再度升级版
*/
boolean first=true;
int[] fib;
public int fibNacci(int n){
if(first){
first=false;
fib = new int[n];
}
if(n==1) {
return 1;
}
if(n == 2) {
return 1;
}
if(fib[n]!=0){
return fib[n];
}
return fib[n]=fibNacci(n-1)+fibNacci(n-2);
}
/**
*最优化版
*/
public int fibNacci2(int n){
int a=0,b=1,sum=0,i;
for(i=0;i<n;i++){
sum=a+b;
a = b;
b = sum;
}
return sum;
}
}
标签:fib,return,tong,--,sum,斐波,int,那契,public 来源: https://blog.csdn.net/qq_43285863/article/details/120180996