其他分享
首页 > 其他分享> > 自己写的一个zynq系列dma 将stream 数据从pl读取写入ps的ddr

自己写的一个zynq系列dma 将stream 数据从pl读取写入ps的ddr

作者:互联网

`timescale 1ns / 1ps

module all
(
input           [31:0]      indata_data,
input                       indata_enable,

input                       aclk,
input                       aresetn,

//write address channal
output reg     [31:0]       outdata_awaddr,    //1
output reg     [7:0]        outdata_awlen,     //2
output reg     [2:0]        outdata_awsize,    //3
output reg     [1:0]        outdata_awburst,   //4
output reg     [3:0]        outdata_awcache,   //5
output reg     [2:0]        outdata_awprot,    //6   
output reg                  outdata_awvalid,   //7
input                       outdata_awready,   //8

//write data channal
output reg     [31:0]       outdata_wdata,
output reg     [3:0]        outdata_wstrb,
output reg			        outdata_wlast,
output reg			        outdata_wvalid,
input                       outdata_wready,

//write response channal
input          [1:0]        outdata_bresp,
input                       outdata_bvalid,
output reg                  outdata_bready,

//ddr3 address control

input           [31:0]      ddr3_address_w_en,
input           [31:0]      ddr3_address_i_en,

input           [31:0]      ddr3_address_a_s,
input           [31:0]      ddr3_address_a_e,
input           [31:0]      ddr3_address_a_i,

input           [31:0]      ddr3_address_b_s,
input           [31:0]      ddr3_address_b_e,
input           [31:0]      ddr3_address_b_i,

//output for irq
output  reg                 irq_a,
output  reg                 irq_b,     

//port for debug
output          [7:0]       state_port,
output          [15:0]      full_port,
output          [11:0]      memory_w_address_port,
output          [11:0]      memory_r_address_port
);

reg [7:0]   memory_r_state;
assign  state_port  =       memory_r_state;



//this variables are is for the memory read and write
reg [11:0]  memory_w_address;
reg [11:0]  memory_r_address;
reg [31:0]  memory[4095:0];

assign memory_r_address_port=memory_r_address;
assign memory_w_address_port=memory_w_address;

//*******************************************************
//this part is for the memory_full which for is the for blank control
//*******************************************************

reg [15:0]  memory_full;
assign full_port=memory_full;

always @ (posedge aclk)
begin
    if(!aresetn)
    begin
        memory_full<=16'd0;
    end
    else
    begin
        if(memory_w_address[7:0]==8'hff)
        begin
            memory_full[memory_w_address[11:8]]<=1'b1;
        end
        else
        begin
            if(memory_r_address[7:0]==8'hff)
            begin
                memory_full[memory_r_address[11:8]]<=1'b0;
            end
        end
    end
end

//*******************************************************
//this part is for the memory write task
//*******************************************************
wire    memory_w_enable;
assign  memory_w_enable=indata_enable;

always @ (posedge aclk)
begin
    if(!aresetn)
    begin
        memory_w_address<=12'd0;
    end
    else
    begin
       if(memory_w_enable)
       begin
            if((!memory_full[memory_w_address[11:8]+2'd2])&(!memory_full[memory_w_address[11:8]+2'd1]))
            begin
                memory[memory_w_address]<=indata_data;
                memory_w_address<=memory_w_address+1'b1;                
            end
       end
    end
end



//*******************************************************
//this part is the memory read task and the axi_4_full protocol for the ddr3
//*******************************************************

reg irq_a_pre;
reg irq_b_pre;

reg [31:0]  ddr3_address;

always @ (posedge aclk)
begin
    if(!aresetn)
    begin
        memory_r_address        <=      12'h0;
        memory_r_state          <=      8'd0;  
        ddr3_address            <=      32'h00000000;   
    end
    else
    begin
        case(memory_r_state)
        8'd0:
        begin
            if(ddr3_address_w_en[0])   //for write enable
            begin
                if(memory_full[memory_r_address[11:8]]&(memory_full[memory_r_address[11:8]+2'd1]))
                begin
                    memory_r_state      <=  8'd1;
                end
            end
            
            irq_a_pre               <=1'b0;
            irq_b_pre               <=1'b0;
        end 
        
        //address control
        8'd1:
        begin
            if(outdata_awready)
            begin
                memory_r_state      <=  8'd2;
                ddr3_address        <=  (ddr3_address<ddr3_address_a_s)?ddr3_address_a_s:
                                        (ddr3_address<ddr3_address_a_e)?(ddr3_address+32'd1024):
                                        (ddr3_address<ddr3_address_b_s)?ddr3_address_b_s:
                                        (ddr3_address<ddr3_address_b_e)?(ddr3_address+32'd1024):ddr3_address_a_s;
            end
        end
        
        8'd2:
        begin
            memory_r_state          <=  8'd3;
            
            outdata_awvalid         <=  1'b1;
            outdata_awaddr          <=  ddr3_address;
            outdata_awlen           <=  8'hff;
            outdata_awsize          <=  3'b010;
            outdata_awburst         <=  2'd1;
            outdata_awcache         <=  4'd0;
            outdata_awprot          <=  3'b000;
            
            outdata_wvalid          <=  1'b1;           
            outdata_wlast           <=  1'b0;
            outdata_wstrb           <=  4'b1111;
            
            outdata_wdata           <=  memory[memory_r_address];
            memory_r_address        <=  memory_r_address+1'b1;
            
        end
        
        8'd3:
        begin
            memory_r_state          <=  8'd4;
                    
            outdata_awvalid         <=  1'b0;
            outdata_awaddr          <=  32'd0;
            outdata_awlen           <=  8'h0;
            outdata_awsize          <=  3'b000;
            outdata_awburst         <=  2'd0;
            outdata_awcache         <=  4'hf;
            outdata_awprot          <=  3'b111;   
        end
        
        
        8'd4:
        begin
            if(outdata_wready)
            begin
                memory_r_address    <=  memory_r_address+1'b1;
                outdata_wdata       <=  memory[memory_r_address];
            end
            
            if(memory_r_address[7:0]==8'hff)
            begin
                outdata_wlast       <=  1'b1;
                memory_r_state      <=  8'd5;
            end
            
        end
        
        8'd5:
        begin
            memory_r_state      <=  8'd6;
            
            outdata_wvalid      <=  1'b0;
            outdata_wlast       <=  1'b0;
        end
        
        8'd6:
        begin
            if(outdata_bvalid)
            begin
                outdata_bready  <=1'b1;
                memory_r_state  <=8'd7;
            end
        end
        
        8'd7:
        begin
            if(!outdata_bvalid)
            begin
                outdata_bready  <=1'b0;
                memory_r_state  <=8'd8;
            end
        end
        
        8'd8:
        begin
                memory_r_state  <=8'd0;
                irq_a_pre       <=(ddr3_address==ddr3_address_a_i);
                irq_b_pre       <=(ddr3_address==ddr3_address_b_i);
        end
        
        endcase
    end
end




//*******************************************************
//this part is for irq control including enable and clear
//*******************************************************

always @ (posedge aclk)
begin
    if(!aresetn)
    begin
        irq_a<=1'b0;
        irq_b<=1'b0;
    end
    else
    begin
        if(ddr3_address_i_en[0])
        begin
            irq_a<=(irq_a)?1'b1:irq_a_pre;
            irq_b<=(irq_b)?1'b1:irq_b_pre;
        end
        else
        begin
            irq_a<=1'b0;
            irq_b<=1'b0;
        end
    end
end



endmodule

`timescale 1 ns / 1 ps

	module all_master #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line

		// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 5
	)
	(
		// Users to add ports here
        output           [31:0]      ddr3_address_w_en,
        output           [31:0]      ddr3_address_i_en,

        output           [31:0]      ddr3_address_a_s,
        output           [31:0]      ddr3_address_a_e,
        output           [31:0]      ddr3_address_a_i,

        output           [31:0]      ddr3_address_b_s,
        output           [31:0]      ddr3_address_b_e,
        output           [31:0]      ddr3_address_b_i,
            
		// User ports ends
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Write channel Protection type. This signal indicates the
    		// privilege and security level of the transaction, and whether
    		// the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Write address valid. This signal indicates that the master signaling
    		// valid write address and control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that the slave is ready
    		// to accept an address and associated control signals.
		output wire  S_AXI_AWREADY,
		// Write data (issued by master, acceped by Slave) 
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte lanes hold
    		// valid data. There is one write strobe bit for each eight
    		// bits of the write data bus.    
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write valid. This signal indicates that valid write
    		// data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    		// can accept the write data.
		output wire  S_AXI_WREADY,
		// Write response. This signal indicates the status
    		// of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Write response valid. This signal indicates that the channel
    		// is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    		// can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Protection type. This signal indicates the privilege
    		// and security level of the transaction, and whether the
    		// transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Read address valid. This signal indicates that the channel
    		// is signaling valid read address and control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that the slave is
    		// ready to accept an address and associated control signals.
		output wire  S_AXI_ARREADY,
		// Read data (issued by slave)
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of the
    		// read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read valid. This signal indicates that the channel is
    		// signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    		// accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4LITE signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rvalid;

	// Example-specific design signals
	// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	// ADDR_LSB is used for addressing 32/64 bit registers/memories
	// ADDR_LSB = 2 for 32 bits (n downto 2)
	// ADDR_LSB = 3 for 64 bits (n downto 3)
	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
	localparam integer OPT_MEM_ADDR_BITS = 2;
	//----------------------------------------------
	//-- Signals for user logic register space example
	//------------------------------------------------
	//-- Number of Slave Registers 8
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg0;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg1;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg2;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg3;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg4;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg5;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg6;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg7;
	wire	 slv_reg_rden;
	wire	 slv_reg_wren;
	reg [C_S_AXI_DATA_WIDTH-1:0]	 reg_data_out;
	integer	 byte_index;
	reg	 aw_en;

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RVALID	= axi_rvalid;
	// Implement axi_awready generation
	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      aw_en <= 1'b1;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // slave is ready to accept write address when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_awready <= 1'b1;
	          aw_en <= 1'b0;
	        end
	        else if (S_AXI_BREADY && axi_bvalid)
	            begin
	              aw_en <= 1'b1;
	              axi_awready <= 1'b0;
	            end
	      else           
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_awaddr latching
	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // Write Address latching 
	          axi_awaddr <= S_AXI_AWADDR;
	        end
	    end 
	end       

	// Implement axi_wready generation
	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
	        begin
	          // slave is ready to accept write data when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_wready <= 1'b1;
	        end
	      else
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       

	// Implement memory mapped register select and write logic generation
	// The write data is accepted and written to memory mapped registers when
	// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	// select byte enables of slave registers while writing.
	// These registers are cleared when reset (active low) is applied.
	// Slave register write enable is asserted when valid address and data are available
	// and the slave is ready to accept the write address and write data.
	assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      slv_reg0 <= 0;
	      slv_reg1 <= 0;
	      slv_reg2 <= 0;
	      slv_reg3 <= 0;
	      slv_reg4 <= 0;
	      slv_reg5 <= 0;
	      slv_reg6 <= 0;
	      slv_reg7 <= 0;
	    end 
	  else begin
	    if (slv_reg_wren)
	      begin
	        case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	          3'h0:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 0
	                slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h1:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 1
	                slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h2:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 2
	                slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h3:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 3
	                slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h4:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 4
	                slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h5:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 5
	                slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h6:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 6
	                slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h7:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 7
	                slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          default : begin
	                      slv_reg0 <= slv_reg0;
	                      slv_reg1 <= slv_reg1;
	                      slv_reg2 <= slv_reg2;
	                      slv_reg3 <= slv_reg3;
	                      slv_reg4 <= slv_reg4;
	                      slv_reg5 <= slv_reg5;
	                      slv_reg6 <= slv_reg6;
	                      slv_reg7 <= slv_reg7;
	                    end
	        endcase
	      end
	  end
	end    

	// Implement write response logic generation
	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid  <= 0;
	      axi_bresp   <= 2'b0;
	    end 
	  else
	    begin    
	      if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
	        begin
	          // indicates a valid write response is available
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; // 'OKAY' response 
	        end                   // work error responses in future
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	            //check if bready is asserted while bvalid is high) 
	            //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	end   

	// Implement axi_arready generation
	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_araddr  <= 32'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID)
	        begin
	          // indicates that the slave has acceped the valid read address
	          axi_arready <= 1'b1;
	          // Read address latching
	          axi_araddr  <= S_AXI_ARADDR;
	        end
	      else
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_arvalid generation
	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
	        begin
	          // Valid read data is available at the read data bus
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          // Read data is accepted by the master
	          axi_rvalid <= 1'b0;
	        end                
	    end
	end    

	// Implement memory mapped register select and read logic generation
	// Slave register read enable is asserted when valid address is available
	// and the slave is ready to accept the read address.
	assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
	always @(*)
	begin
	      // Address decoding for reading registers
	      case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	        3'h0   : reg_data_out <= slv_reg0;
	        3'h1   : reg_data_out <= slv_reg1;
	        3'h2   : reg_data_out <= slv_reg2;
	        3'h3   : reg_data_out <= slv_reg3;
	        3'h4   : reg_data_out <= slv_reg4;
	        3'h5   : reg_data_out <= slv_reg5;
	        3'h6   : reg_data_out <= slv_reg6;
	        3'h7   : reg_data_out <= slv_reg7;
	        default : reg_data_out <= 0;
	      endcase
	end

	// Output register or memory read data
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rdata  <= 0;
	    end 
	  else
	    begin    
	      // When there is a valid read address (S_AXI_ARVALID) with 
	      // acceptance of read address by the slave (axi_arready), 
	      // output the read dada 
	      if (slv_reg_rden)
	        begin
	          axi_rdata <= reg_data_out;     // register read data
	        end   
	    end
	end    

	// Add user logic here
        assign      ddr3_address_w_en=slv_reg0;
        assign      ddr3_address_i_en=slv_reg1;

        assign      ddr3_address_a_s=slv_reg2;
        assign      ddr3_address_a_e=slv_reg3;
        assign      ddr3_address_a_i=slv_reg4;

        assign      ddr3_address_b_s=slv_reg5;
        assign      ddr3_address_b_e=slv_reg6;
        assign      ddr3_address_b_i=slv_reg7;
	// User logic ends

	endmodule

`timescale 1 ns / 1 ps

	module all_slave #
	(
		// Users to add parameters here


		// User parameters ends
		// Do not modify the parameters beyond this line

		// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 5
	)
	(
		// Users to add ports here
		
        //output for irq
        input                    irq_a,
        input                    irq_b,     

        //port for debug
        input          [7:0]       state_port,
        input          [15:0]      full_port,
        input          [11:0]      memory_w_address_port,
        input          [11:0]      memory_r_address_port,
        
		// User ports ends
		
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Write channel Protection type. This signal indicates the
    		// privilege and security level of the transaction, and whether
    		// the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Write address valid. This signal indicates that the master signaling
    		// valid write address and control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that the slave is ready
    		// to accept an address and associated control signals.
		output wire  S_AXI_AWREADY,
		// Write data (issued by master, acceped by Slave) 
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte lanes hold
    		// valid data. There is one write strobe bit for each eight
    		// bits of the write data bus.    
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write valid. This signal indicates that valid write
    		// data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    		// can accept the write data.
		output wire  S_AXI_WREADY,
		// Write response. This signal indicates the status
    		// of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Write response valid. This signal indicates that the channel
    		// is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    		// can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Protection type. This signal indicates the privilege
    		// and security level of the transaction, and whether the
    		// transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Read address valid. This signal indicates that the channel
    		// is signaling valid read address and control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that the slave is
    		// ready to accept an address and associated control signals.
		output wire  S_AXI_ARREADY,
		// Read data (issued by slave)
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of the
    		// read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read valid. This signal indicates that the channel is
    		// signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    		// accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4LITE signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rvalid;

	// Example-specific design signals
	// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	// ADDR_LSB is used for addressing 32/64 bit registers/memories
	// ADDR_LSB = 2 for 32 bits (n downto 2)
	// ADDR_LSB = 3 for 64 bits (n downto 3)
	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
	localparam integer OPT_MEM_ADDR_BITS = 2;
	//----------------------------------------------
	//-- Signals for user logic register space example
	//------------------------------------------------
	//-- Number of Slave Registers 6
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg0;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg1;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg2;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg3;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg4;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg5;
	wire	 slv_reg_rden;
	wire	 slv_reg_wren;
	reg [C_S_AXI_DATA_WIDTH-1:0]	 reg_data_out;
	integer	 byte_index;
	reg	 aw_en;

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RVALID	= axi_rvalid;
	// Implement axi_awready generation
	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      aw_en <= 1'b1;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // slave is ready to accept write address when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_awready <= 1'b1;
	          aw_en <= 1'b0;
	        end
	        else if (S_AXI_BREADY && axi_bvalid)
	            begin
	              aw_en <= 1'b1;
	              axi_awready <= 1'b0;
	            end
	      else           
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_awaddr latching
	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // Write Address latching 
	          axi_awaddr <= S_AXI_AWADDR;
	        end
	    end 
	end       

	// Implement axi_wready generation
	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
	        begin
	          // slave is ready to accept write data when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_wready <= 1'b1;
	        end
	      else
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       

	// Implement memory mapped register select and write logic generation
	// The write data is accepted and written to memory mapped registers when
	// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	// select byte enables of slave registers while writing.
	// These registers are cleared when reset (active low) is applied.
	// Slave register write enable is asserted when valid address and data are available
	// and the slave is ready to accept the write address and write data.
	assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      slv_reg0 <= 0;
	      slv_reg1 <= 0;
	      slv_reg2 <= 0;
	      slv_reg3 <= 0;
	      slv_reg4 <= 0;
	      slv_reg5 <= 0;
	    end 
	  else begin
	    if (slv_reg_wren)
	      begin
	        case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	          3'h0:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 0
	                slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h1:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 1
	                slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h2:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 2
	                slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h3:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 3
	                slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h4:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 4
	                slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          3'h5:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 5
	                slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          default : begin
	                      slv_reg0 <= slv_reg0;
	                      slv_reg1 <= slv_reg1;
	                      slv_reg2 <= slv_reg2;
	                      slv_reg3 <= slv_reg3;
	                      slv_reg4 <= slv_reg4;
	                      slv_reg5 <= slv_reg5;
	                    end
	        endcase
	      end
	  end
	end    

	// Implement write response logic generation
	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid  <= 0;
	      axi_bresp   <= 2'b0;
	    end 
	  else
	    begin    
	      if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
	        begin
	          // indicates a valid write response is available
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; // 'OKAY' response 
	        end                   // work error responses in future
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	            //check if bready is asserted while bvalid is high) 
	            //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	end   

	// Implement axi_arready generation
	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_araddr  <= 32'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID)
	        begin
	          // indicates that the slave has acceped the valid read address
	          axi_arready <= 1'b1;
	          // Read address latching
	          axi_araddr  <= S_AXI_ARADDR;
	        end
	      else
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_arvalid generation
	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
	        begin
	          // Valid read data is available at the read data bus
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          // Read data is accepted by the master
	          axi_rvalid <= 1'b0;
	        end                
	    end
	end    

	// Implement memory mapped register select and read logic generation
	// Slave register read enable is asserted when valid address is available
	// and the slave is ready to accept the read address.
	assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
	always @(*)
	begin
	      // Address decoding for reading registers
	      case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	        
//	          input                    irq_a,
//            input                    irq_b,     

//            //port for debug
//            input          [7:0]       state_port,
//            input          [15:0]      full_port,
//            input          [11:0]      memory_w_address_port,
//            input          [11:0]      memory_r_address_port,
	      
	        3'h0   : reg_data_out <= irq_a;
	        3'h1   : reg_data_out <= irq_b;
	        3'h2   : reg_data_out <= state_port;
	        3'h3   : reg_data_out <= full_port;
	        3'h4   : reg_data_out <= memory_w_address_port;
	        3'h5   : reg_data_out <= memory_r_address_port;
	        default : reg_data_out <= 0;
	      endcase
	end

	// Output register or memory read data
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rdata  <= 0;
	    end 
	  else
	    begin    
	      // When there is a valid read address (S_AXI_ARVALID) with 
	      // acceptance of read address by the slave (axi_arready), 
	      // output the read dada 
	      if (slv_reg_rden)
	        begin
	          axi_rdata <= reg_data_out;     // register read data
	        end   
	    end
	end    

	// Add user logic here

	// User logic ends

	endmodule
`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2021/04/21 17:21:49
// Design Name: 
// Module Name: all_source
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


module all_source(
input   aclk,
input   aresetn,

output  reg [31:0]   data,
output          data_enb
    );
    
    assign data_enb=(counter==8'd1);
    
    reg [7:0] counter;
    always @(posedge aclk)
    begin
        counter<=(counter<8'd10)?(counter+1'b1):8'd0;
    end
    
    always @(posedge aclk)
    begin
        if(counter==8'd1)
        begin
            data<=data+1'b1;
        end
    end
    
    
    
    
    
endmodule

下面是c语言的控制端口,一个是while等待,一个是irq中断

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include <xil_io.h>
#include "xparameters.h"

int main()
{
    init_platform();

    print("Hello World\n\r");


	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+2*4,0x1000000);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+3*4,0x1800000-1024);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+4*4,0x1100000);

	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+5*4,0x1800000);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+6*4,0x2000000-1024);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+7*4,0x1900000);


	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,1);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+0*4,1);

	while(1)
	{
		int a= (Xil_In32(XPAR_ALL_SLAVE_0_BASEADDR+0*4));
		int b= (Xil_In32(XPAR_ALL_SLAVE_0_BASEADDR+1*4));
		if(a||b)
		{
			Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,0);
			Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,1);

			printf("%d %d\n",a,b);

		}
	}



    cleanup_platform();
    return 0;
}




#include <xil_io.h>
#include "xparameters.h"
#include <stdio.h>
#include "xscugic.h"




int irq_flag=0;
void irq61_handler(void *CallbackRef)
{

	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,0);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,1);

	irq_flag=61;
}

void irq62_handler(void *CallbackRef)
{

	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,0);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,1);

	irq_flag=62;
}

int irq_setup(u16 intrid, void *intr_handler)
{
	int Result;


	XScuGic *intcinstance; /* The Instance of the Interrupt Controller Driver */


	XScuGic_Config *intcconfig;

	/*
	 * Initialize the interrupt controller driver so that it is ready to
	 * use.
	 */
	intcconfig = XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
	if (NULL == intcconfig)
	{
		return XST_FAILURE;
	}

	Result = XScuGic_CfgInitialize(intcinstance, intcconfig,	intcconfig->CpuBaseAddress);
	if (Result != XST_SUCCESS)
	{
		return XST_FAILURE;
	}

	XScuGic_SetPriorityTriggerType(intcinstance, intrid,0xA0, 0x3);



	/* Enable the interrupt for the GPIO device.*/
	XScuGic_Enable(intcinstance, intrid);


	Result = XScuGic_Connect(intcinstance, intrid,(Xil_ExceptionHandler)intr_handler, (void*)1);
	if (Result != XST_SUCCESS)
	{
		return Result;
	}

	/*
	 * Initialize the exception table and register the interrupt
	 * controller handler with the exception table
	 */
	Xil_ExceptionInit();

	Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT, (Xil_ExceptionHandler)XScuGic_InterruptHandler, intcinstance);

	/* Enable non-critical exceptions */
	Xil_ExceptionEnable();

	return XST_SUCCESS;
}



#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"


int main()
{
    init_platform();

    print("Hello World\n\r");

	irq_setup(61,irq61_handler);
	irq_setup(62,irq62_handler);

	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+2*4,0x1000000);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+3*4,0x1800000-1024);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+4*4,0x1100000);

	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+5*4,0x1800000);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+6*4,0x2000000-1024);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+7*4,0x1900000);


	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+1*4,1);
	Xil_Out32(XPAR_ALL_MASTER_0_BASEADDR+0*4,1);


	while(1)
	{
		if(irq_flag==61)
		{
			irq_flag=0;
			print("a");
		}
		if(irq_flag==62)
		{

			irq_flag=0;
			print("b");
		}
	}


    cleanup_platform();
    return 0;
}

标签:dma,wire,stream,ps,output,address,input,AXI,reg
来源: https://blog.csdn.net/weixin_38888158/article/details/119915092