其他分享
首页 > 其他分享> > LibTorch实战六:U2-Net实战训练<二>

LibTorch实战六:U2-Net实战训练<二>

作者:互联网

一、数据准备

U2-Net模型分为两种:

(5s为700万个参数,VGG-16有4000万,ResNet 1.3亿个参数)


  人体/肖像分割预训练模型:u2net_human_seg.pth ,这个模型是基于Supervisely Person Dataset(数据集由5711张图片组成,有6884个高质量的标注的人体实例)
(基于U2Net做了一些改进,比如数据增强),这个模型虽然不会有“发丝”级别的高精度,但是也比官方U2Net基于DUST-TR数据集训练得出的预训练模型(u2net.pt)效果好。
  
其他模型信息参考:LibTorch实战六:U2-Net实战部署<三> 第一节、数据标注。

 

标签:实战,训练,模型,u2net,U2,LibTorch,Net
来源: https://www.cnblogs.com/winslam/p/14687296.html