其他分享
首页 > 其他分享> > 262. 行程和用户

262. 行程和用户

作者:互联网

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目

表:Trips
+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| Id          | int      |
| Client_Id   | int      |
| Driver_Id   | int      |
| City_Id     | int      |
| Status      | enum     |
| Request_at  | date     |     
+-------------+----------+
Id 是这张表的主键。

这张表中存所有出租车的行程信息。每段行程有唯一 Id ,其中 Client_Id 和 Driver_Id 是 Users 表中 Users_Id 的外键。
Status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。

表:Users

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| Users_Id    | int      |
| Banned      | enum     |
| Role        | enum     |
+-------------+----------+
Users_Id 是这张表的主键。

这张表中存所有用户,每个用户都有一个唯一的 Users_Id ,Role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。
Banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。

写一段 SQL 语句查出 “2013-10-01” 至 “2013-10-03” 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 Banned 为 No 的用户,禁止用户即 Banned 为 Yes 的用户。

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。

返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

查询结果格式如下例所示:

Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| Id | Client_Id | Driver_Id | City_Id | Status              | Request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |
| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |
| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |
| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |
| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |
| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |
| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |
| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |
| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |
| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+
Users 表:
+----------+--------+--------+
| Users_Id | Banned | Role   |
+----------+--------+--------+
| 1        | No     | client |
| 2        | Yes    | client |
| 3        | No     | client |
| 4        | No     | client |
| 10       | No     | driver |
| 11       | No     | driver |
| 12       | No     | driver |
| 13       | No     | driver |
+----------+--------+--------+
Result 表:
+------------+-------------------+
| Day        | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33              |
| 2013-10-02 | 0.00              |
| 2013-10-03 | 0.50              |
+------------+-------------------+

2013-10-01:

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/trips-and-users
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、解题思路

1.WHERE+WHEN CASE

(1)先求出非禁止用户生成的订单总数
(2)在上述基础上求出没有完成的订单(即取消的订单)
(3)求取消率

SELECT Request_at Day,
 round(sum(case Status when'completed' THEN 0 ELSE 1 END)/count(Status),2) 'Cancellation Rate'
FROM Trips t,Users u1,Users u2
WHERE t.Client_Id=u1.Users_Id 
and  u1.Banned='No'
and  t.Driver_Id=u2.Users_Id
and  u2.Banned='No'
and Request_at between '2013-10-01' and '2013-10-03'
Group by Request_at
ORDER BY Day;

2. JOIN ON + IF()

SELECT t.Request_at as Day,
round((sum(if(t.Status='completed',0,1))/count(t.Status)),2) 'Cancellation Rate'
FROM Trips t 
JOIN Users u1
ON  (t.Client_Id=u1.Users_Id and u1.Banned='No')
JOIN Users u2
ON  (t.Driver_Id=u2.Users_Id and u2.Banned='No')
and t.Request_at between '2013-10-01' and '2013-10-03'
GROUP BY t.Request_at  
ORDER BY Day;

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

标签:10,Users,No,completed,行程,用户,262,Id,2013
来源: https://blog.csdn.net/weixin_38196290/article/details/119485120