ceres教程(1)
作者:互联网
@
目录官方教程的中文精简版,方便自己和已经有一定基础的同学查看
一、介绍
Ceres 可以解决以下形式的边界约束鲁棒化非线性最小二乘问题
\(f_i(.)\)是CostFunction
。也就是误差函数,也叫代价函数。
\(\rho_i\)是LossFunction
。LossFunction 是一个标量函数,用于减少异常值对非线性最小二乘问题的解决方案的影响。
二、简单的例子
\[f(x)=\frac{1}{2}(10-x)^2 \]2.1 定义CostFunction
struct CostFunctor {
template <typename T>
bool operator()(const T* const x, T* residual) const {
residual[0] = 10.0 - x[0];
return true;
}
};
2.2 构建最小二乘问题求解
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
// The variable to solve for with its initial value.
double initial_x = 5.0;
double x = initial_x;
// Build the problem.
Problem problem;
// Set up the only cost function (also known as residual). This uses
// auto-differentiation to obtain the derivative (jacobian).
CostFunction* cost_function =
new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);
// Run the solver!
Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
std::cout << "x : " << initial_x
<< " -> " << x << "\n";
return 0;
}
三、3种求导形式
3.1 自动求导
应用于已知CostFunction形式的场合,使用方法如2.2
小节中所示
struct CostFunctor {
template <typename T>
bool operator()(const T* const x, T* residual) const {
residual[0] = 10.0 - x[0];
return true;
}
};
CostFunction* cost_function =
new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);
3.2 数值导数(即人工求导)
在某些情况下,无法定义模板化的CostFunction,例如当残差的评估涉及对无法控制的库函数的调用时。
struct NumericDiffCostFunctor {
bool operator()(const double* const x, double* residual) const {
residual[0] = 10.0 - x[0];
return true;
}
};
CostFunction* cost_function =
new NumericDiffCostFunction<NumericDiffCostFunctor, ceres::CENTRAL, 1, 1>(
new NumericDiffCostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);
一般来说,推荐自动微分而不是数字微分。使用 C++ 模板使自动微分高效,而数值微分代价高昂,容易出现数值错误,并导致收敛速度较慢。
3.3 分析导数
在某些情况下,无法使用自动微分。例如,可能的情况是,以封闭形式计算导数比依赖自动微分代码使用的链式规则更有效。
class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
public:
virtual ~QuadraticCostFunction() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double x = parameters[0][0];
residuals[0] = 10 - x;
// Compute the Jacobian if asked for.
if (jacobians != nullptr && jacobians[0] != nullptr) {
jacobians[0][0] = -1;
}
return true;
}
};
CostFunction* cost_function = new QuadraticCostFunction;
problem.AddResidualBlock(cost_function, NULL, &x);
Evaluate
提供了一个parameters
输入数组,一个用于残差的输出数组residuals
和一个用于Jacobians的输出数组jacobians
。jacobians数组是可选的,Evaluate要检查它是否为非空,如果是的话,就用残差函数的导数值填充它。
这种方法最繁琐,一般不建议使用
四、多个CostFunction
最小化 \(\frac{1}{2}||F(x)||^2\)
4.1 定义每一个CostFunction
例如\(f_4(x)\)
struct F4 {
template <typename T>
bool operator()(const T* const x1, const T* const x4, T* residual) const {
residual[0] = sqrt(10.0) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
return true;
}
};
4.2 添加ResidualBlock
double x1 = 3.0; double x2 = -1.0; double x3 = 0.0; double x4 = 1.0;
Problem problem;
// Add residual terms to the problem using the using the autodiff
// wrapper to get the derivatives automatically.
problem.AddResidualBlock(
new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), nullptr, &x1, &x2);
problem.AddResidualBlock(
new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), nullptr, &x3, &x4);
problem.AddResidualBlock(
new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), nullptr, &x2, &x3)
problem.AddResidualBlock(
new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), nullptr, &x1, &x4);
五、曲线拟合
之前的例子都是没有数据的,这里用数据拟合一条曲线
\[y=e^{mx+c} \]5.1 定义CostFunction
struct ExponentialResidual {
ExponentialResidual(double x, double y)
: x_(x), y_(y) {}
template <typename T>
bool operator()(const T* const m, const T* const c, T* residual) const {
residual[0] = y_ - exp(m[0] * x_ + c[0]);
return true;
}
private:
// Observations for a sample.
const double x_;
const double y_;
};
5.2 添加ResidualBlock
假设观察值在一个名为data的2n大小的数组中,问题的构建是一个简单的问题,即为每个观察值创建一个CostFunction。
double m = 0.0;
double c = 0.0;
Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
CostFunction* cost_function =
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
new ExponentialResidual(data[2 * i], data[2 * i + 1]));
problem.AddResidualBlock(cost_function, nullptr, &m, &c);
}
可以看到这里的CostFunction比没有数据时多了参数输入。
六、鲁棒的曲线拟合
现在假设我们得到的数据有一些离群值,也就是说,我们有一些不服从噪声模型的点。如果我们使用上面的代码来拟合这些数据,我们会得到一个如下的拟合结果。
为了处理异常值,标准技术是使用 LossFunction。LossFunction减少了残差高的残差块的影响,这些通常是那些对应于异常值的残差块。为了将损失函数与残差块相关联,我们改变
problem.AddResidualBlock(cost_function, nullptr , &m, &c);
to
problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c);
CauchyLoss 是 Ceres Solver 附带的损失函数之一。参数 0.5 指定损失函数的规模。结果,我们得到了低于 7 的拟合。
七、Bundle Adjustment
以视觉SLAM的重投影误差作为CostFunction
struct SnavelyReprojectionError {
SnavelyReprojectionError(double observed_x, double observed_y)
: observed_x(observed_x), observed_y(observed_y) {}
template <typename T>
bool operator()(const T* const camera,
const T* const point,
T* residuals) const {
// camera[0,1,2] are the angle-axis rotation.
T p[3];
// 将世界坐标系的3D点point,转到相机坐标系下的3D点P
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
// 计算归一化坐标
T xp = - p[0] / p[2];
T yp = - p[1] / p[2];
// Apply second and fourth order radial distortion.
// 径向畸变系数
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp*xp + yp*yp;
T distortion = 1.0 + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6]; //焦距
// 像素坐标
T predicted_x = focal * distortion * xp;
T predicted_y = focal * distortion * yp;
// The error is the difference between the predicted and observed position.
// 重投影误差
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;
}
// Factory to hide the construction of the CostFunction object from
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
new SnavelyReprojectionError(observed_x, observed_y)));
}
double observed_x;
double observed_y;
};
ceres::Problem problem;
for (int i = 0; i < bal_problem.num_observations(); ++i) {
ceres::CostFunction* cost_function =
SnavelyReprojectionError::Create(
bal_problem.observations()[2 * i + 0],
bal_problem.observations()[2 * i + 1]);
problem.AddResidualBlock(cost_function,
nullptr /* squared loss */,
bal_problem.mutable_camera_for_observation(i),
bal_problem.mutable_point_for_observation(i));
}
由于这是一个很大的稀疏问题(无论如何对于 DENSE_QR 来说都很大),解决这个问题的一种方法是将 Solver::Options::linear_solver_type 设置为 SPARSE_NORMAL_CHOLESKY 并调用 Solve()。虽然这是一个合理的做法,但束调整问题有一个特殊的稀疏结构,可以利用它来更有效地解决它们。 Ceres 为此任务提供了三个专门的求解器(统称为基于 Schur 的求解器)。示例代码使用其中最简单的 DENSE_SCHUR。
ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_SCHUR;
options.minimizer_progress_to_stdout = true;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.FullReport() << "\n";
标签:教程,ceres,const,double,cost,new,problem,CostFunction 来源: https://www.cnblogs.com/long5683/p/15111026.html