其他分享
首页 > 其他分享> > Day4 决策表

Day4 决策表

作者:互联网

原文链接:决策表
Definition 1. A decision system is a 5-tuple S = ( U , C , D , V , I ) S = (\mathbf{U}, \mathbf{C}, \mathbf{D}, \mathbf{V}, I) S=(U,C,D,V,I), where

  1. 写出下表中的 U , C , D , V \mathbf{U}, \mathbf{C}, \mathbf{D}, \mathbf{V} U,C,D,V. 注: 最后两个属性为决策属性.
    在这里插入图片描述

U = { x 1 , x 2 , … , x 7 } \mathbf{U} = \{x_1, x_2, \dots, x_7\} U={x1​,x2​,…,x7​}.
C = { Yes , No , High , Normal , Low } \mathbf{C} = \{\textrm{Yes}, \textrm{No}, \textrm{High}, \textrm{Normal}, \textrm{Low}\} C={Yes,No,High,Normal,Low}
D = { Normal , Abnormal , Yes , No } \mathbf{D} = \{ \textrm{Normal}, \textrm{Abnormal}, \textrm{Yes}, \textrm{No}\} D={Normal,Abnormal,Yes,No}
V = { Yes , No , High , Normal , Low , Abnormal } \mathbf{V} = \{\textrm{Yes}, \textrm{No}, \textrm{High}, \textrm{Normal}, \textrm{Low}, \textrm{Abnormal}\} V={Yes,No,High,Normal,Low,Abnormal}

  1. 定义一个标签分布系统, 即各标签的值不是 0/1, 而是 [0,1] 区间的实数, 且同一对象的标签和为 1.
    Definition: A label distribution system is a tuple S = ( X , Y ) S = (\mathbf{X}, \mathbf{Y}) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X} = [x_{ij}]_{n \times m} \in \mathbb{R}^{n \times m} X=[xij​]n×m​∈Rn×m is the data matrix, Y = [ y i k ] n × l ∈ [ 0 , 1 ] n × l \mathbf{Y} = [y_{ik}]_{n \times l} \in [0, 1]^{n \times l} Y=[yik​]n×l​∈[0,1]n×l is the label matrix and ∑ k = 1 l y i k = 1 \sum_{k=1}^l y_{ik} = 1 ∑k=1l​yik​=1, n n n is the number of instances, m m m is the number of features, and l l l is the number of labels.

标签:mathbf,决策表,Normal,Day4,No,High,textrm,Yes
来源: https://blog.csdn.net/qq_41033011/article/details/119358290