其他分享
首页 > 其他分享> > 题解 [ABC130F] Minimum Bounding Box

题解 [ABC130F] Minimum Bounding Box

作者:互联网

这题分讨略有点恶心啊。

题面给了一堆运动的点,要求一个时刻时正着覆盖所有点的最小矩形最小。

脑补了一下觉得这是一个单峰函数,于是想着三分,但是又不太确定,所以写。

模拟一下可以发现,很多点其实是对答案没有影响的,因为它们的运行速度都一样,所以在同一个方向上运行的点只有最左边和最右边(最上最下)的是有用的。
那么就把四个方向上的点都单独拿出来,然后找出最两边的来考虑就行了。

数据范围已经缩小到了 \(n=4 \times 2 = 8\) 了,怎么实现呢?
再次观察运动过程,其实答案在最小的时候肯定是两个点并到一块儿了。考虑两个的相对运动,互相远离的一定不可能让答案变小,而一个变大一个变小的要么最后一个维度减到 \(0\),要么一个维度被其它的给约数住,只剩下一个维度的变化,所以肯定是两个点撞在同一水平或竖直线线的时候。

那么就变成一道大力分讨题了,讨论所有相撞的时间然后代入验证就可以了。

需要讨论的相撞:

  1. 两点在水平方向上相向运动。
  2. 两点在竖直方向上相向运动。
  3. 一个往上,一个往左。
  4. 一个往上,一个往右。
  5. 一个往下,一个往左。
  6. 一个往下,一个往右。

我开始没有想得很清楚,实现很不精细,调来调去后才过的。

混乱的代码
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <utility>
#include <vector>
#include <cmath>
#define fi first
#define se second
#define mapa std::make_pair
const int N = 100005;
std::vector<std::pair<int, int> > p[5];
std::vector<std::pair<std::pair<int, int>, int> > vi;
double ans = 1e18;
char st[N][5];
int x[N], y[N], tr[256], n;
double get(double t) {
    if (t < 0) return 1e18;
    double xmax = -1e18, xmin = 1e18, ymax = -1e18, ymin = 1e18;
    for (int i = 1; i <= n; i++) {
        double nx = x[i], ny = y[i];
        if (st[i][0] == 'R') nx += t;
        else if (st[i][0] == 'L') nx -= t;
        else if (st[i][0] == 'U') ny += t;
        else ny -= t;
        xmax = std::max(nx, xmax), xmin = std::min(xmin, nx);
        ymax = std::max(ny, ymax), ymin = std::min(ny, ymin);
    }
    return (xmax - xmin) * (ymax - ymin);
}
int main(){ 
    tr['R'] = 1, tr['L'] = 2, tr['U'] = 3, tr['D'] = 4;
    std::cin >> n;
    for (int i = 1; i <= n; i++) {
        std::cin >> x[i] >> y[i] >> st[i];
        p[tr[st[i][0]]].push_back(mapa(x[i], y[i]));
    }
    for (int i = 1; i <= 4; i++) {
        int xmax = 0, xmin = 0, ymax = 0, ymin = 0;
        for (int j = 1; j < (int)p[i].size(); j++) {
            if (p[i][j].fi > p[i][xmax].fi) xmax = j;
            if (p[i][j].fi < p[i][xmin].fi) xmin = j;
            if (p[i][j].se > p[i][ymax].se) ymax = j;
            if (p[i][j].se < p[i][ymin].se) ymin = j;
        }
        if (p[i].size()) {
            vi.push_back(mapa(p[i][xmax], i)), vi.push_back(mapa(p[i][xmin], i)), 
            vi.push_back(mapa(p[i][ymax], i)), vi.push_back(mapa(p[i][ymin], i));
        }
    }
    std::cout << std::fixed << std::setprecision(10);
    ans = get(0);
    for (int i_ = 0; i_ < (int)vi.size(); i_++)
        for (int j_ = 0; j_ < (int)vi.size(); j_++) {
            int i = i_, j = j_;
            int op1 = vi[i].se, op2 = vi[j].se;
            if (op1 > op2) std::swap(i, j), std::swap(op1, op2);
            if (op1 * op2 == 2) {
                double t = -1.0 * (1.0 * vi[i].fi.fi - vi[j].fi.fi) / 2;
                ans = std::min(ans, get(t));
            }
            else if (op1 * op2 == 12) {
                double t = -1.0 * (1.0 * vi[i].fi.se - vi[j].fi.se) / 2;
                ans = std::min(ans, get(t));
            }
            if (op1 <= 2) {
                if (op2 == 3) {
                    double t = (vi[i].fi.se - vi[j].fi.se);
                    ans = std::min(ans, get(t));
                }
                else if (op2 == 4) {
                    double t = -(vi[i].fi.se - vi[j].fi.se);
                    ans = std::min(ans, get(t));  
                }
            }
            if (op2 > 2) {
                if (op1 == 1) {
                    double t = -(vi[i].fi.fi - vi[j].fi.fi);
                    ans = std::min(ans, get(t));
                }
                else if (op1 == 2) {
                    double t = (vi[i].fi.fi - vi[j].fi.fi);
                    ans = std::min(ans, get(t));  
                }
            }
        }
    std::cout << ans;
}

标签:std,题解,ans,double,Minimum,vi,Bounding,fi,se
来源: https://www.cnblogs.com/Acfboy/p/ABC130F.html