其他分享
首页 > 其他分享> > 7月27日

7月27日

作者:互联网

今天继续学习hdfs

 

 

(1)客户端通过 Distributed FileSystem 模块向 NameNode 请求上传文件,NameNode 检查目标文件是否已存在,父目录是否存在。

(2)NameNode 返回是否可以上传。

(3)客户端请求第一个 Block 上传到哪几个 DataNode 服务器上。

(4)NameNode 返回 3 个 DataNode 节点,分别为 dn1、dn2、dn3。

(5)客户端通过 FSDataOutputStream 模块请求 dn1 上传数据,dn1 收到请求会继续调用 dn2,然后 dn2 调用 dn3,将这个通信管道建立完成。

(6)dn1、dn2、dn3 逐级应答客户端。

(7)客户端开始往 dn1 上传第一个 Block(先从磁盘读取数据放到一个本地内存缓存), 以 Packet 为单位,dn1 收到一个 Packet 就会传给 dn2,dn2 传给 dn3;dn1   每传一个 packet 会放入一个应答队列等待应答。

(8)当一个 Block 传输完成之后,客户端再次请求 NameNode 上传第二个 Block 的服务 器。(重复执行 3-7 步)。

这里像计算机网络

 

 

 

 

 

拓扑节点计算是算节点到共同祖先的距离和,这里有点数据结构的味道

 

 

 

(1)     客户端通过 DistributedFileSystem 向 NameNode 请求下载文件,NameNode 通过查 询元数据,找到文件块所在的 DataNode 地址。

(2)挑选一台 DataNode(就近原则,然后随机)服务器,请求读取数据。

(3)DataNode 开始传输数据给客户端(从磁盘里面读取数据输入流,以 Packet 为单位 来做校验)。

(4)客户端以 Packet 为单位接收,先在本地缓存,然后写入目标文件。

 

简单了解了一下MapReduce:

MapReduce 进程 一个完整的 MapReduce 程序在分布式运行时有三类实例进程: (1)MrAppMaster:负责整个程序的过程调度及状态协调。(2)MapTask:负责 Map 阶段的整个数据处理流程。 (3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。

 

 

 

学习时间:13:49到 16:42

标签:27,请求,DataNode,dn1,dn2,NameNode,客户端
来源: https://www.cnblogs.com/buyaoya-pingdao/p/15066770.html