其他分享
首页 > 其他分享> > 295. 数据流的中位数

295. 数据流的中位数

作者:互联网

为了动态维护中位数,我们可以建立两个二叉堆:一个小根堆、一个大根堆。

在依次读入这个整数序列的过程中,设当前序列长度为M,我们始终保持:

  1. 序列中从小到大排名为1 ~ M/2的整数存储在大根堆中;
  2. 序列中从小到大排名为M/2+1 ~ M的整数存储在小根堆中,
  3. 大根堆允许存储的元素最多比小根堆多一个。

任何时候,如果某一个堆中元素个数过多, 打破了这个性质,就取出该堆的堆顶插入另一个堆。

class MedianFinder {
public:
    priority_queue<int> maxHeap;
    priority_queue<int, vector<int>, greater<int>> minHeap;
    /** initialize your data structure here. */
    MedianFinder() {

    }
    
    void addNum(int num) {
        if (maxHeap.empty() || num < maxHeap.top()) 
            maxHeap.push(num);
        else
            minHeap.push(num);

        if (maxHeap.size() > minHeap.size() + 1) {
            minHeap.push(maxHeap.top());
            maxHeap.pop();
        }else if (minHeap.size() > maxHeap.size()) {
            maxHeap.push(minHeap.top());
            minHeap.pop();
        }
    }
    
    double findMedian() {
        return maxHeap.size() == minHeap.size() ? (maxHeap.top() + minHeap.top()) / 2.0 : maxHeap.top();
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */

标签:top,maxHeap,中位数,num,数据流,minHeap,MedianFinder,295,size
来源: https://www.cnblogs.com/fxh0707/p/15063403.html