其他分享
首页 > 其他分享> > 语音深度学习常用的特征:梅尔谱

语音深度学习常用的特征:梅尔谱

作者:互联网

Mel spectrogram 梅尔谱

根据我们人类听觉的特性,我们对低频声音比较敏感,对高频声音没那么敏感

所以当声音频率线性增大时,频率越高,我们越难听出差别,因此不用线性谱而是对数谱

Mel谱包含三大特性:

Mel谱的核心就是Mel-scale,一个对数尺度的对于频率感知线性变化的尺度
在这里插入图片描述

提取Mel谱的方法:

  1. 做STFT得到复数矩阵
  2. 将幅度转成分贝(db) 问:如果这里在mel spectrogram里面就把幅度转成db了,
    那Log_mel_spectrogram跟它又有什么区别呢?
  3. 将频率转到mel-scale

step 3 : 先选择mel bands的数目,一个mel band就像一系列跟感知有关的频率

构造mel filter banks:

对语谱图使用mel filter banks

M = (# bands, framesize / 2 + 1)

Y = (framesize / 2 + 1, # frames)

Mel spectrogram = MY (# bands, # frames)

但如果只是简单理解的话,Mel谱只是把普通语谱图的频率从线性转到了mel尺度

mel尺度是一种对数尺度,人类对于频率的感知在mel尺度上更加敏感

Mel谱的各种应用:

# Extract Mel spectrograms
mel_spectrogram = librosa.feature.melspectrogram(source, sr=sr1, n_fft=1024, hop_length=512, n_mels=128)

log_mel_spectrogram = librosa.power_to_db(mel_spectrogram)

标签:梅尔谱,语音,bands,mel,尺度,深度,spectrogram,频率,Mel
来源: https://blog.csdn.net/rambo_csdn_123/article/details/119045391