第二章
2 数据重构
2.1 数据的合并
2.1.1 将data文件夹里面的所有数据都载入,观察数据的之间的关系
# 导入基本库
import numpy as np
import pandas as pd
# 载入data文件中的:train-left-up.csv
df1=pd.read_csv('./data/train-left-up.csv')
df1.head()
| PassengerId | Survived | Pclass | Name |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry |
---|
df2=pd.read_csv('./data/train-left-down.csv')
df2.head()
| PassengerId | Survived | Pclass | Name |
---|
0 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson |
---|
1 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
---|
2 | 442 | 0 | 3 | Hampe, Mr. Leon |
---|
3 | 443 | 0 | 3 | Petterson, Mr. Johan Emil |
---|
4 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion |
---|
df3=pd.read_csv('./data/train-right-up.csv')
df3.head()
| Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
df4=pd.read_csv('./data/train-right-down.csv')
df4.head()
| Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
2.1.2 使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
result_up=pd.concat([df1,df3],axis=1)
result_up.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
2.1.3 使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
result_down=pd.concat([df2,df4],axis=1)
result_down.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | 442 | 0 | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | 443 | 0 | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
result=pd.concat([result_up,result_down],axis=0)
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
2.1.4 使用DataFrame自带的方法join方法和append:实现2.1.2和2.1.3
result_up=df1.join(df3)
result_up.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
result_down=df2.join(df4)
result_down.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | 442 | 0 | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | 443 | 0 | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
result=result_up.append(result_down)
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
2.1.5 使用Panads的merge方法和DataFrame的append方法:实现2.1.2和2.1.3
参数补充
how:指的是连接方式有inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner!
left_index:使用左则DataFrame中的行索引做为连接键
right_index:使用右则DataFrame中的行索引做为连接键
suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(’_x’,’_y’)
result_up=pd.merge(df1,df3,left_index=True,right_index=True)
result_up.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
result_down=pd.merge(df2,df4,left_index=True,right_index=True)
result_down.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | 442 | 0 | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | 443 | 0 | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
result=result_up.append(result_down)
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在2.1.4和2.15的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成2.1.4和2.15呢?
#用merge完成2.1.4
result=pd.merge(result_up,result_down,how='left')
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
#用join完成2.1.4
#上面提过列名相同需要修改
result=result_up.join(result_down,rsuffix='_2')
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | ... | Pclass_2 | Name_2 | Sex_2 | Age_2 | SibSp_2 | Parch_2 | Ticket_2 | Fare_2 | Cabin_2 | Embarked_2 |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | ... | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | ... | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | ... | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | ... | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | ... | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
5 rows × 24 columns
思考回答:
merge默认以重叠的列名为连接键,上面d1和d3是完全两个不同的表,所以在连接的时候就要指定left_index和right_index。
join当两个表中列名不同时,不加任何参数就可以直接用,有重名列时要通过参数lsuffix, rsuffix。
concat基于轴向连接,关键参数为axis。
append可以很方便连接两个相同列名的dataframe且不用加参数。
2.1.6 完成的数据保存为result.csv
result.to_csv('result.csv')
2.2 换一种角度看数据
2.2.1 将我们的数据变为Series类型的数据
df = pd.read_csv('result.csv')
df.head()
| Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | ... | Pclass_2 | Name_2 | Sex_2 | Age_2 | SibSp_2 | Parch_2 | Ticket_2 | Fare_2 | Cabin_2 | Embarked_2 |
---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | ... | 2 | Kvillner, Mr. Johan Henrik Johannesson | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | ... | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | ... | 3 | Hampe, Mr. Leon | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | ... | 3 | Petterson, Mr. Johan Emil | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | ... | 2 | Reynaldo, Ms. Encarnacion | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
5 rows × 25 columns
out=df.stack()
out.head()
0 Unnamed: 0 0
PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
dtype: object
out.to_csv('unit_result.csv')
test=pd.read_csv('unit_result.csv')
test.head()
| Unnamed: 0 | Unnamed: 1 | 0 |
---|
0 | 0 | Unnamed: 0 | 0 |
---|
1 | 0 | PassengerId | 1 |
---|
2 | 0 | Survived | 0 |
---|
3 | 0 | Pclass | 3 |
---|
4 | 0 | Name | Braund, Mr. Owen Harris |
---|
# 导入基本库
import numpy as np
import pandas as pd
# 载入上一个任务人保存的文件中:result.csv,并查看这个文件
df=pd.read_csv('result.csv')
df.head()
| Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
---|
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
---|
2.3 数据聚合与运算
2.3.1 通过教材《Python for Data Analysis》P303、Google or anything来学习了解GroupBy机制
按照分组键进行分组,再按照某列进行应用,产生一个新Series
2.3.2 计算泰坦尼克号男性与女性的平均票价
df1=df['Fare'].groupby(df['Sex'])
means=df1.mean()
means
Sex
female 44.479818
male 25.523893
Name: Fare, dtype: float64
2.3.3 统计泰坦尼克号中男女的存活人数
# 存活的记为1,死亡记为0,存活的通过sum相加
df2=df['Survived'].groupby(df['Sex'])
sums=df2.sum()
sums
Sex
female 233
male 109
Name: Survived, dtype: int64
2.3.4 计算客舱不同等级的存活人数
df3=df['Survived'].groupby(df['Pclass'])
sums=df3.sum()
sums
Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64
【思考】从数据分析的角度,上面的统计结果可以得出那些结论
思考心得 :
女性的平均票价比男性的贵,一定概率说明女性更多的购买了高等级客舱票,而且女性的存活人数是男性的两倍,也可以看出越高等级客舱存活率越高
【思考】从任务二到任务三中,这些运算可以通过agg()函数来同时计算。并且可以使用rename函数修改列名。你可以按照提示写出这个过程吗?
#思考心得
df.groupby('Sex').agg({'Fare': 'mean', 'Survived': 'sum'}).rename(columns=
{'Fare': 'mean_fare', 'Survived': 'sum_pclass'})
| | |
---|
Sex | mean_fare | sum_pclass |
---|
female | 44.479818 | 233 |
---|
male | 25.523893 | 109 |
---|
2.3.5 统计在不同等级的票中的不同年龄的船票花费的平均值
df.groupby(['Pclass','Age'])['Fare'].mean().head()
Pclass Age
1 0.92 151.5500
2.00 151.5500
4.00 81.8583
11.00 120.0000
14.00 120.0000
Name: Fare, dtype: float64
2.3.6 将2.3.2和2.3.3的数据合并,并保存到sex_fare_survived.csv
df=pd.merge(means,sums,left_index=True,right_index=True)
df.head()
| Fare | Survived |
---|
Sex | | |
---|
female | 44.479818 | 233 |
---|
male | 25.523893 | 109 |
---|
df.to_csv('sex_fare_survived.csv')
2.3.7 得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)
a=df['Survived'].groupby(df['Age'])
b=a.sum()
b.head()
Age
0.42 1
0.67 1
0.75 2
0.83 2
0.92 1
Name: Survived, dtype: int64
b[b.values==b.max()]
Age
24.0 15
Name: Survived, dtype: int64
sums=df['Survived'].sum()
sums
342
survival_rate=b.max()/sums
survival_rate
0.043859649122807015
标签:重构,...,Mrs,result,Mr,Task03,csv,数据,2.1
来源: https://blog.csdn.net/dhdbzhsj/article/details/118858864