详解红黑树
作者:互联网
红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型用途是实现关联数组。它在1972年由鲁道夫·贝尔发明,被称为"对称二叉B树",它现代的名字源于Leo J. Guibas和罗伯特·塞奇威克于1978年写的一篇论文。红黑树的结构复杂,但它的操作有着良好的最坏情况运行时间,并且在实践中高效:它可以在 时间内完成查找、插入和删除,这里的 是树中元素的数目。
用途和好处
红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保。这不只是使它们在时间敏感的应用,如实时应用(real time application)中有价值,而且使它们有在提供最坏情况担保的其他数据结构中作为基础模板的价值;例如,在计算几何中使用的很多数据结构都可以基于红黑树实现。
红黑树在函数式编程中也特别有用,在这里它们是最常用的持久数据结构(persistent data structure)之一,它们用来构造关联数组和集合,每次插入、删除之后它们能保持为以前的版本。除了的时间之外,红黑树的持久版本对每次插入或删除需要的空间。
红黑树是2-3-4树的一种等同。换句话说,对于每个2-3-4树,都存在至少一个数据元素是同样次序的红黑树。在2-3-4树上的插入和删除操作也等同于在红黑树中颜色翻转和旋转。这使得2-3-4树成为理解红黑树背后的逻辑的重要工具,这也是很多介绍算法的教科书在红黑树之前介绍2-3-4树的原因,尽管2-3-4树在实践中不经常使用。
红黑树相对于AVL树来说,牺牲了部分平衡性以换取插入/删除操作时少量的旋转操作,整体来说性能要优于AVL树。
性质
红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
- 节点是红色或者黑色;
- 根节点是黑色;
- 所有叶子节点都是黑色;
- 每个红色节点必须有两个黑色的子节点;
- 从任一节点到每个叶子的所有简单路径都包含相同数目的黑色节点。
下面是一个具体的红黑树的图例:
这些约束确保了红黑树的关键特性:从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
要知道为什么这些性质确保了这个结果,注意到性质4导致了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。
在很多树数据结构的表示中,一个节点有可能只有一个子节点,而叶子节点包含数据。用这种范例表示红黑树是可能的,但是这会改变一些性质并使算法复杂。为此,本文中我们使用"nil叶子"或"空(null)叶子",如上图所示,它不包含数据而只充当树在此结束的指示。这些节点在绘图中经常被省略,导致了这些树好像同上述原则相矛盾,而实际上不是这样。与此有关的结论是所有节点都有两个子节点,尽管其中的一个或两个可能是空叶子。
参考资料:https://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91
标签:黑树,黑色,路径,插入,详解,红黑树,节点 来源: https://blog.csdn.net/Vermont_/article/details/118767295