dpdk-rte_mbuf数据结构学习
作者:互联网
搞网络不知道dpdk。。。不合适。。。
搞dpdk不知道rte_mbuf。。。不合适。。。
所以,搞搞搞。。。
上源码!!!
//关于dpdk rte_mbuf数据结构的学习
/* define a set of marker types that can be used to refer to set points in the
* mbuf */
/* 定义一组可用于引用 mbuf 中的设置点的标记类型*/
__extension__
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
__extension__
typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
__extension__
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
* with a single assignment */
/**
* The generic rte_mbuf, containing a packet mbuf.
*/
struct rte_mbuf {
MARKER cacheline0; /* 柔性数组,标记开头 */
void *buf_addr; /**< Virtual address of segment buffer. */
/**
* Physical address of segment buffer.
* Force alignment to 8-bytes, so as to ensure we have the exact
* same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
* working on vector drivers easier.
*/
RTE_STD_C11
union {
rte_iova_t buf_iova;
rte_iova_t buf_physaddr; /**< deprecated */
} __rte_aligned(sizeof(rte_iova_t));
/* next 8 bytes are initialised on RX descriptor rearm */
MARKER64 rearm_data;
uint16_t data_off;
/**
* Reference counter. Its size should at least equal to the size
* of port field (16 bits), to support zero-copy broadcast.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
RTE_STD_C11
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
uint16_t nb_segs; /**< Number of segments. */
/** Input port (16 bits to support more than 256 virtual ports). */
uint16_t port;
uint64_t ol_flags; /**< Offload features. */
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
/*
* The packet type, which is the combination of outer/inner L2, L3, L4
* and tunnel types. The packet_type is about data really present in the
* mbuf. Example: if vlan stripping is enabled, a received vlan packet
* would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
* vlan is stripped from the data.
*/
RTE_STD_C11
union {
uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
struct {
uint32_t l2_type:4; /**< (Outer) L2 type. */
uint32_t l3_type:4; /**< (Outer) L3 type. */
uint32_t l4_type:4; /**< (Outer) L4 type. */
uint32_t tun_type:4; /**< Tunnel type. */
RTE_STD_C11
union {
uint8_t inner_esp_next_proto;
/**< ESP next protocol type, valid if
* RTE_PTYPE_TUNNEL_ESP tunnel type is set
* on both Tx and Rx.
*/
__extension__
struct {
uint8_t inner_l2_type:4;
/**< Inner L2 type. */
uint8_t inner_l3_type:4;
/**< Inner L3 type. */
};
};
uint32_t inner_l4_type:4; /**< Inner L4 type. */
};
};
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t data_len; /**< Amount of data in segment buffer. */
/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
uint16_t vlan_tci;
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
RTE_STD_C11
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
struct {
uint32_t lo;
uint32_t hi;
} sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
uint16_t vlan_tci_outer;
uint16_t buf_len; /**< Length of segment buffer. */
/** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
* are not normalized but are always the same for a given port.
*/
uint64_t timestamp;
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_min_aligned;
RTE_STD_C11
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
struct rte_mbuf *next; /**< Next segment of scattered packet. */
/* fields to support TX offloads */
RTE_STD_C11
union {
uint64_t tx_offload; /**< combined for easy fetch */
__extension__
struct {
uint64_t l2_len:7;
/**< L2 (MAC) Header Length for non-tunneling pkt.
* Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
*/
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
/** Timesync flags for use with IEEE1588. */
uint16_t timesync;
/** Sequence number. See also rte_reorder_insert(). */
uint32_t seqn;
}
好家伙,果然mbuf,大名鼎鼎。下面分别对每个字段进行学习解释。
下面按照出现顺序对每个字段进行解释。
MARKER cacheline0;
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
查看typedef,发现这是一个柔性数组。长度为0,所以这里在编译时是不占用内存滴。只是一个标记喽。MARKER嘛。
void *buf_addr; /**< Virtual address of segment buffer. */
有图就容易解释了,一些指针、成员或函数结果的内容在下表中列出,mbuf指针简写为m
m | 首部,即mbuf结构体 |
m->buf_addr | headroom起始地址 |
m->data_off | data起始地址相对于buf_addr的偏移 |
m->buf_len | mbuf和priv之后内存的长度,包含headroom |
m->pkt_len | 整个mbuf链的data总长度 |
m->data_len | 实际data的长度 |
m->buf_addr+m->data_off | 实际data的起始地址 |
rte_pktmbuf_mtod(m) | 同上 |
rte_pktmbuf_data_len(m) | 同m->data_len |
rte_pktmbuf_pkt_len | 同m->pkt_len |
rte_pktmbuf_data_room_size | 同m->buf_len |
rte_pktmbuf_headroom | headroom长度 |
rte_pktmbuf_tailroom | 尾部剩余空间长度 |
综合图片解释以及上述表格的备注。这里buf_addr就是rte_mbuf结构体尾部,headroom起始地址。
/**
* Physical address of segment buffer.
* Force alignment to 8-bytes, so as to ensure we have the exact
* same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
* working on vector drivers easier.
*/
RTE_STD_C11
union {
rte_iova_t buf_iova;
rte_iova_t buf_physaddr; /**< deprecated */
} __rte_aligned(sizeof(rte_iova_t));
段缓冲区的物理地址。 强制8字节对齐,保证在32位和64位有相同的cacheline0。这块暂时无需关注。
/* next 8 bytes are initialised on RX descriptor rearm */
MARKER64 rearm_data;
接下来的 8 个字节在 RX 描述符重装时初始化 。
uint16_t data_off;
data起始地址相对于buf_addr的偏移。要获取data的位置,m->buf_addr + m->data_off ,就是对应的data的实际指针。一般中间间隔是一个headroom的大小。
/**
* Reference counter. Its size should at least equal to the size
* of port field (16 bits), to support zero-copy broadcast.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
RTE_STD_C11
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
引用计数。这里用union实现了原子访问和非原子访问2种。计数的规格至少等于端口字段的大小16bits,(用来支持零拷贝广播?不明白)。
uint16_t nb_segs; /**< Number of segments. */
分片数。
/** Input port (16 bits to support more than 256 virtual ports). */
uint16_t port;
入接口id号。
uint64_t ol_flags; /**< Offload features. */
offload特性标记。
offload特性,主要是指将原本在协议栈中进行的IP分片、TCP分段、重组、checksum校验等操作,转移到网卡硬件中进行,降低系统CPU的消耗,提高处理性能。
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
从描述符中提取数据包时,剩余字节设置在 RX 上。标记使用,MARKER。。。
/*
* The packet type, which is the combination of outer/inner L2, L3, L4
* and tunnel types. The packet_type is about data really present in the
* mbuf. Example: if vlan stripping is enabled, a received vlan packet
* would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
* vlan is stripped from the data.
*/
/* 数据包类型,它是外部/内部 L2、L3、L4 和隧道类型的组合。
* packet_type 是关于 mbuf 中真正存在的数据。
* 如果启用了 vlan 剥离,则接收到的 vlan 数据包将具有 RTE_PTYPE_L2_ETHER
* 而不是 RTE_PTYPE_L2_VLAN,因为 vlan 已从数据中剥离。
*/
RTE_STD_C11
union {
uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
struct {
uint32_t l2_type:4; /**< (Outer) L2 type. */
uint32_t l3_type:4; /**< (Outer) L3 type. */
uint32_t l4_type:4; /**< (Outer) L4 type. */
uint32_t tun_type:4; /**< Tunnel type. */
RTE_STD_C11
union {
uint8_t inner_esp_next_proto;
/**< ESP next protocol type, valid if
* RTE_PTYPE_TUNNEL_ESP tunnel type is set
* on both Tx and Rx.
*/
__extension__
struct {
uint8_t inner_l2_type:4;
/**< Inner L2 type. */
uint8_t inner_l3_type:4;
/**< Inner L3 type. */
};
};
uint32_t inner_l4_type:4; /**< Inner L4 type. */
};
};
此数据结构比较清晰,无需多余解释。有一个疑问,这里的inner && outer具体是什么呢?
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t data_len; /**< Amount of data in segment buffer. */
pkt_len,包括所有分片的长度。
data_len,当前的数据长度。如果没有分片,pkt_len与data_len数值应该是相同的。也就是pkt_len >= data_len.
/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
uint16_t vlan_tci;
只有开启了PKT_RX_VLAN_STRIPPED标记,此字段才是有效的。vlan时使用,学习vlan时,需要关注此字段。
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
RTE_STD_C11
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
struct {
uint32_t lo;
uint32_t hi;
} sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
哈希数据。这里是一个union。当RSS开启时,对应rss字段是哈希结果。学习RSS时,关注一下。
/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
uint16_t vlan_tci_outer;
只有开启了QINQ剥离时,此字段有效。外部vlan相关。
uint16_t buf_len; /**< Length of segment buffer. */
mbuf和priv之后内存的长度,包含headroom。
/** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
* are not normalized but are always the same for a given port.
*/
uint64_t timestamp;
时间戳。PKT_RX_TIMESAMP开启时,此字段有效。单位和时间参考未标准化,但对于给定端口始终相同。
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_min_aligned;
第二个cacheline,这部分内容仅用在慢路或者发包流程中。
RTE_STD_C11
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
//#define RTE_STD_C11 __extension__
__extension__字段用于消除编译告警。
这里是一个union,
在userdata指针总可以用来存放额外的元数据。
udata64,可以存放8字节的用户数据。
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
标识本mbuf是从哪个rte_mempool池子中申请到的。也就是该mbuf是哪个rte_mempool池子的。
struct rte_mbuf *next; /**< Next segment of scattered packet. */
在分片报文中,标记下一个报文的位置。
/* fields to support TX offloads */
/* 用于支持发包硬件卸载的字段 */
RTE_STD_C11
union {
uint64_t tx_offload; /**< combined for easy fetch */
/* tx_offload 组合起来,方便取用 */
__extension__
struct {
uint64_t l2_len:7;
/**< L2 (MAC) Header Length for non-tunneling pkt.
* Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
*/
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* TSO(TCP Segment Offload)是一种利用网卡的少量处理能力,
降低CPU发送数据包负载的技术,需要网卡硬件及驱动的支持。 */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
支持硬件发包卸载的字段内容。内部为一个union。其中tx_offload字段是为了容易获取搞出来的。
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
应用程序私有数据的大小。
在indirect mbuf 的情况下,它存储direct mbuf 私有数据大小。 关于direct mbuf与indirect mbuf的区别,参考链接
10. Mbuf Library — Data Plane Development Kit 21.08.0-rc1 documentation (dpdk.org)
/** Timesync flags for use with IEEE1588. */
/* IEEE1588 协议,又称 PTP( precise time protocol,精确时间协议),
* 可以达到亚微秒级别时间同步精度,于 2002 年发布 version 1,
* 2008 年发布 version 2。 */
uint16_t timesync;
时间同步。参考IEEE1588。
/** Sequence number. See also rte_reorder_insert(). */
uint32_t seqn;
序列号。这个是哪里用到呢?
rte_mbuf的数据结构学习完毕。有一些遗留的问题,后续来完善。
标签:rte,data,mbuf,len,type,uint32,dpdk 来源: https://blog.51cto.com/qiaopeng688/3035432