其他分享
首页 > 其他分享> > SpringCloud Alibaba笔记

SpringCloud Alibaba笔记

作者:互联网

作为Java语言的落地微服务框架,Spring Cloud已经在各大企业普遍应用,各大云厂商也支持Spring Cloud微服务框架的云产品,因此熟练掌握Spring Cloud是面试者的加分项……

在这给大家分享一些整理的微服务架构学习的笔记,其中包括Spring Cloud,Spring Cloud Alibaba 学习笔记(共5份笔记)!由于字数篇幅原因,为了不影响阅读在这就展示了整个目录和内容截图。

文件:590m.com/f/25127180-500762588-6c0bb6(访问密码:551685)

以下内容无关:

-------------------------------------------分割线---------------------------------------------

一、前言
随着商城业务渠道不断扩展,促销玩法不断增多,原商城v2.0架构已经无法满足不断增加的活动玩法,需要进行促销系统的独立建设,与商城解耦,提供纯粹的商城营销活动玩法支撑能力。

我们将分系列来介绍vivo商城促销系统建设的过程中遇到的问题和解决方案,分享架构设计经验。

二、系统框架
2.1 业务梳理
在介绍业务架构前我们先简单了解下vivo商城促销系统业务能力建设历程,对现促销能力进行梳理回顾。在商城v2.0中促销功能存在以下问题:

  1. 促销模型不够抽象,维护混乱,没有独立的活动库存;

  2. 混乱的活动共融互斥关系管理,缺乏统一的促销计价能力。

商城核心交易链路中商详页、购物车、下单这三块关于计价逻辑是分开独立维护的,没有统一,如下图所示。显然随着促销优惠的增加或者玩法的变动,商城侧业务重复开发量会显著加大。

(图2-1. 促销计价统一前)

  1. 促销性能无法满足活动量级,往往会影响商城主站的性能。

因与商城系统耦合,无法提供针对性的性能优化,造成系统无法支撑越来越频繁的大流量场景下大促活动。

基于这些痛点问题,我们一期完成促销系统的独立,与商城解耦,搭建出促销系统核心能力:

优惠活动管理

对所有优惠活动抽象出统一的优惠模型和配置管理界面,提供活动编辑、修改、查询及数据统计等功能。并独立出统一的活动库存管理,便于活动资源的统一把控。

促销计价

基于高度灵活、抽象化的计价引擎能力,通过定义分层计价的促销计价模型,制定统一的优惠叠加规则与计价流程,实现vivo商城促销计价能力的建设。推动完成vivo商城所有核心链路接入促销计价,实现全链路优惠价格计算的统一,如下图:

(图2-2. 促销计价统一后)

随着一期促销系统核心能力的完成,极大的满足了业务需要,各类优惠玩法随之增多。但伴随而来的就是各种运营痛点:

维护的促销活动无法提前点检,检查活动效果是否符合预期;

随着优惠玩法的增多,一个商品所能享受的优惠越来越多,配置也越来越复杂,极易配置错误造成线上事故;

为此我们开始促销系统二期的能力建设,着重解决以上运营痛点:

提供时光穿越功能,实现用户能够“穿越”至未来某个时间点,从而实现促销活动的提前点检;

提供价格监控功能,结合「商城营销价格能力矩阵」规划的能力,通过事前/事中/事后多维度监控措施,来“降低出错概率,出错能及时止损”。

2.2 促销与优惠券
促销的主要目的就是向用户传递商品的各种优惠信息,提供优惠利益,吸引用户购买,从而起到促活拉新、提高销量的目的。从这种角度来看,优惠券也属于促销的一部分。

但因一些原因vivo商城促销系统独立过程中,并没有与促销系统放一块:

首先,优惠券系统在商城v2.0时就已独立,已经对接很多上游业务,已经是成熟的中台系统;

再者,就是优惠券也有相较与其它促销优惠的业务特殊性,如有发券、领券能力。

在考虑设计改造成本就未将优惠券包括在促销系统能力范畴,但优惠券毕竟也是商品价格优惠的一部分,因此促销计价需要依赖优惠券系统提供券优惠的能力。

2.3 业务架构&流程
至此我们也就梳理出整个促销系统的大概能力矩阵,整体架构设计如下:

(图2-3. 促销系统架构)

而随着促销系统独立,整个商城购物流程与促销系统的关系如下:

(图2-4. 最新商城购物流程)

三、技术挑战
作为中台能力系统,促销系统面临的技术挑战包括以下几方面:

面对复杂多变的促销玩法、优惠叠加规则,如何让系统具备可扩展性,满足日益多变的优惠需求,提升开发与运营效率。

面对新品发布、双11大为客户等大流量场景,如何满足高并发场景下的高性能要求。

面对来自上游业务方的不可信调用,以及下游依赖方的不可靠服务等复杂系统环境,如何提升系统整体的稳定性,保障系统的高可用。

我们结合自身业务特点,梳理出一些技术解决方案。

3.1 可扩展性
扩展性提升主要体现在两块:

优惠模型的定义,对所有优惠活动抽象出统一的优惠模型和配置管理界面;

促销计价引擎的建立,计价模型的统一。

相关的详细设计内容,会有后续文章进行说明。

3.2 高并发/高性能
缓存

缓存几乎就是解决性能问题的“银弹”,在促销系统中也大量使用缓存进行性能提升,包括使用redis缓存与本地缓存。而使用缓存就需要关注数据一致性问题,redis缓存还好解决,但本地缓存不就好处理了。因此本地缓存的使用要看业务场景,尽量是数据不经常变更且业务上能接受一定不一致的场景。

批量化

促销系统的业务场景属于典型的读多写少场景,而读的过程中对性能影响最大的就是IO操作,包括db、redis以及第三方远程调用。而对这些IO操作进行批量化改造,以空间换时间,减少IO交互次数也是性能优化的一大方案。

精简化/异步化

简化功能实现,将非核心任务进行异步化改造。如活动编辑后的缓存处理、资源预占后的消息同步、拼团状态流转的消息通知等等。

冷热分离

对于读多写少场景对性能影响最大的除了IO操作,还有就是数据量,在促销系统中也存在一些用户态数据,如优惠资源预占记录、用户拼团信息等。这些数据都具备时间属性,存在热尾效应,大部分情况下需要的都是最近的数据。针对这类场景对数据进行冷热分离是最佳选择。

标签:缓存,SpringCloud,优惠,促销,系统,笔记,Alibaba,计价,商城
来源: https://blog.csdn.net/weixin_43322764/article/details/118312286