其他分享
首页 > 其他分享> > 题解 P3938 斐波那契

题解 P3938 斐波那契

作者:互联网

Solution

设\(f_i\) 为斐波那契数列第 \(i\) 项 , \(f_0=0,f_1=1\) , 第一只兔子在第一月出生
考虑每次产生新兔子的过程 , 可以发现第 \(i\) 月 \((i\geq3)\) 出生的第 \(j\) 个兔子的编号为 \(f_{i-1}+j\) , 它的父亲的也就是 \(j\) , (父亲的编号加上当前全体兔子的编号) , 进一步可以推出\(fa(x)=x-f_i,f_i<x\leq f_{i+1}\) , 那么我们就可以找出一个兔子所有的祖先 , 由于 \(f_{60}\geq 10^{12}\) , 它最多有 \(60\) 个祖先 , 找出祖先后暴力比较即可 .
开 \(O2\) 的时候非 \(void\) 函数一定要写返回值 , 不然全 \(re\) .
时间复杂度 \(O(60m)\)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxd=61;
int m;
ll f[maxd];
ll sta[maxd];int top;
ll fa[maxd],fb[maxd];
void dfs(ll x)
{
    for(int i=60;i>=1;i--)
    {
        if(f[i-1]<x&&f[i]>=x)
        {
            sta[++top]=x;
            x=x-f[i-1];
        }
    }
    sta[++top]=1;
}
int main()
{
    f[1]=1;f[0]=1;
    for(int i=2;i<=60;i++)f[i]=f[i-1]+f[i-2];
    scanf("%d",&m);
    while(m--)
    {
        ll a,b;scanf("%lld%lld",&a,&b);
        top=0;dfs(a);
        int depa=top;
        for(int i=1;i<=top;i++)fa[i]=sta[top-i+1];
        top=0;dfs(b);
        int depb=top;
        for(int i=1;i<=top;i++)fb[i]=sta[top-i+1];
        for(int i=min(depa,depb);i>=1;i--)
            if(fa[i]==fb[i])
            {
                printf("%lld\n",fa[i]);
                break;
            }
    }
    return 0;
}

标签:sta,int,题解,ll,斐波,fa,那契,include,maxd
来源: https://www.cnblogs.com/zero4338/p/14907866.html