其他分享
首页 > 其他分享> > 【575】连续卷积层

【575】连续卷积层

作者:互联网

  对于连续的卷积层,filter 的维度是跟输入图像的维度一致

model = Sequential([
    Conv2D(8, 3, input_shape=(28, 28, 1), use_bias=False),
    Conv2D(16, 3, use_bias=False)
])

model.summary() 

  输出

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_3 (Conv2D)            (None, 26, 26, 8)         72        
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 24, 24, 16)        1152      
=================================================================
Total params: 1,224
Trainable params: 1,224
Non-trainable params: 0
_________________________________________________________________

  其中:

标签:卷积,575,26x26x8,filter,bias,params,Conv2D,_______________________________________
来源: https://www.cnblogs.com/alex-bn-lee/p/14901087.html