canny算子实现
作者:互联网
原理:
实现:
//阶乘
int factorial(int n)
{
int fac = 1;
if (n == 0) return fac;
for (int i = 1; i <= n; ++i) fac *= i;
return fac;
}
//获得Sobel平滑算子
Mat getSobelSmooth(int size)
{
int n = size - 1;
Mat SobelSmoothoper = Mat::zeros(size, 1, CV_32F);
for (int k = 0; k <= n; k++)
{
float *pt = SobelSmoothoper.ptr<float>(0);
pt[k] = factorial(n) / (factorial(k)*factorial(n - k));
}
return SobelSmoothoper;
}
//获得Sobel差分算子
Mat getSobeldiff(int size)
{
Mat Sobeldiffoper = Mat::zeros(Size(size, 1), CV_32F);
Mat SobelSmooth = getSobelSmooth(size - 1);
for (int k = 0; k < size; k++)
{
if (k == 0)
Sobeldiffoper.at<float>(0, k) = 1;
else if (k == size - 1)
Sobeldiffoper.at<float>(0, k) = -1;
else
Sobeldiffoper.at<float>(0, k) = SobelSmooth.at<float>(0, k) - SobelSmooth.at<float>(0, k - 1);
}
return Sobeldiffoper;
}
//卷积实现
void conv2D(Mat& src, Mat& dst, Mat kernel)
{
flip(kernel, kernel, -1);
filter2D(src, dst, CV_32F, kernel);
}
//可分离卷积———先水平方向卷积,后垂直方向卷积
void sepConv2D_X_Y(Mat& src, Mat& dst, Mat kernel_X, Mat kernel_Y)
{
Mat dst_kernel_X;
conv2D(src, dst_kernel_X, kernel_X); //水平方向卷积
conv2D(dst_kernel_X, dst, kernel_Y); //垂直方向卷积
}
//可分离卷积———先垂直方向卷积,后水平方向卷积
void sepConv2D_Y_X(Mat& src, Mat& dst, Mat kernel_Y, Mat kernel_X)
{
Mat dst_kernel_Y;
conv2D(src, dst_kernel_Y, kernel_Y); //垂直方向卷积
conv2D(dst_kernel_Y, dst, kernel_X); //水平方向卷积
}
//Sobel算子边缘检测
void sobel(Mat& src, Mat& dst, Mat& dst_X, Mat& dst_Y, int size)
{
Mat SobelSmoothoper = getSobelSmooth(size); //平滑系数
Mat Sobeldiffoper = getSobeldiff(size); //差分系数
sepConv2D_X_Y(src, dst_Y, SobelSmoothoper, Sobeldiffoper.t()); //得到水平边缘
sepConv2D_Y_X(src, dst_X, SobelSmoothoper.t(), Sobeldiffoper); //得到垂直边缘
//边缘强度(近似)
dst = abs(dst_X) + abs(dst_Y);
convertScaleAbs(dst, dst);
//convertScaleAbs(dst_X, dst_X);
//convertScaleAbs(dst_Y, dst_Y);
}
// 确定一个点的坐标是否在图像内
bool checkInRange(int r, int c, int rows, int cols)
{
if (r >= 0 && r < rows && c >= 0 && c < cols)
return true;
else
return false;
}
//从确定边缘点出发,延长边缘
void trace(Mat &edgeMag_noMaxsup, Mat &edge, float Th, int r, int c, int rows, int cols)
{
if (edge.at<uchar>(r, c) == 0)
{
for (int i = -1; i <= 1; ++i)
{
for (int j = -1; j <= 1; ++j)
{
if (checkInRange(r + i, c + j, rows, cols) && edgeMag_noMaxsup.at<float>(r + i, c + j) > Th)
edge.at<uchar>(r, c) = 255;
}
}
}
}
//Canny边缘检测
void canny(Mat &src, Mat &dst, float Tl, float Th, int ksize = 3, bool L2graydient = false)
{
//高斯滤波
GaussianBlur(src, src, Size(3, 3), 0);
//sobel算子
Mat dx, dy, sobel_dst;
sobel(src, sobel_dst, dx, dy, ksize);
//计算梯度幅值
Mat edgeMag;
if (L2graydient)
magnitude(dx, dy, edgeMag); //开平方
else
edgeMag = abs(dx) + abs(dy); //绝对值之和近似
//计算梯度方向以及非极大值抑制
Mat edgeMag_noMaxsup = Mat::zeros(src.size(), CV_32F);
for (int i = 1; i < src.rows - 1; ++i)
{
for (int j = 1; j < src.cols - 1; ++j)
{
float angle = atan2f(dy.at<float>(i, j), dx.at<float>(i, j)) / CV_PI * 180; //当前位置梯度方向
float cur = edgeMag.at<float>(i, j); //当前位置梯度幅值
//非极大值抑制 垂直边缘--梯度方向为水平方向--3*3邻域内左右方向比较
if (abs(angle) < 22.5 || abs(angle) > 157.5)
{
float left = edgeMag.at<float>(i, j - 1);
float right = edgeMag.at<float>(i, j + 1);
if (cur >= left && cur >= right)
edgeMag_noMaxsup.at<float>(i, j) = cur;
}
//水平边缘--梯度方向为垂直方向--3*3邻域内上下方向比较
if ((angle >= 67.5 && angle <= 112.5) || (angle >= -112.5 && angle <= -67.5))
{
float top = edgeMag.at<float>(i - 1, j);
float down = edgeMag.at<float>(i + 1, j);
if (cur >= top && cur >= down)
edgeMag_noMaxsup.at<float>(i, j) = cur;
}
//+45°边缘--梯度方向为其正交方向--3*3邻域内右上左下方向比较
if ((angle>112.5 && angle <= 157.5) || (angle>-67.5 && angle <= -22.5))
{
float right_top = edgeMag.at<float>(i - 1, j + 1);
float left_down = edgeMag.at<float>(i + 1, j - 1);
if (cur >= right_top && cur >= left_down)
edgeMag_noMaxsup.at<float>(i, j) = cur;
}
//+135°边缘--梯度方向为其正交方向--3*3邻域内右下左上方向比较
if ((angle >= 22.5 && angle < 67.5) || (angle >= -157.5 && angle < -112.5))
{
float left_top = edgeMag.at<float>(i - 1, j - 1);
float right_down = edgeMag.at<float>(i + 1, j + 1);
if (cur >= left_top && cur >= right_down)
edgeMag_noMaxsup.at<float>(i, j) = cur;
}
}
}
//双阈值处理及边缘连接
dst = Mat::zeros(src.size(), CV_8U);
for (int i = 1; i < src.rows - 1; ++i)
{
for (int j = 1; j < src.cols - 1; ++j)
{
float mag = edgeMag_noMaxsup.at<float>(i, j);
//大于高阈值,为确定边缘点
if (mag > Th)
dst.at<uchar>(i, j) = 255;
else if (mag < Tl)
dst.at<uchar>(i, j) = 0;
else
trace(edgeMag_noMaxsup, dst, Th, i, j, src.rows, src.cols);
}
}
}
标签:src,Mat,kernel,实现,dst,edgeMag,int,算子,canny 来源: https://blog.csdn.net/taifyang/article/details/117876187